Skip to main content
Log in

Hyaluronic Acid-RGD Peptide Conjugated Mesoporous Silica-coated Gold Nanorods for Cancer Dual-targeted Chemo-photothermal Therapy

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A multifunctional drug delivery system (GNRs@mSiO2-HA-RGD) was developed by conjugating targeting ligand hyaluronic acid (HA) and RGD with mesoporous silica- coated gold nanorods (GNRs@mSiO2) for dual-targeted chemo-photothermal therapy. The physiochemical properties of the prepared nanoparticles were characterized by FTIR, UV-vis spectra, and 1H NMR. Doxorubicin hydrochloride (DOX), an anticancer drug, was used as the model drug to investigate the drug loading, in vitro drug release profiles and cytotoxicity. The experimental results show that DOX-GNRs@mSiO2-HA-RGD is synthesized with a mean diameter of 116 nm and a sufficient load capacity of about 19.8%. It also has pH-enzyme sensitive and NIRtriggered drug release manner. Cellular uptake indicates that DOX-GNRs@mSiO2-HA-RGD exhibits a higher cellular uptake via CD44 receptor and integrin receptor mediated endocytosis compared with the GNRs@ mSiO2 modified with one receptor or no receptor. In comparison with chemotherapy or photothermal therapy alone, DOX-GNRs@mSiO2-HA-RGD displayes the synergistic effects and achieves a higher therapeutic efficacy. It can be expected that DOX-GNRs@mSiO2-HA-RGD is a potential dual-targeted chemo-photothermal therapeutic platform for effective cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zubrod CG, Schneiderman M, Frei E, et al. Appraisal of Methods for the Study of Chemotherapy of Cancer in Man: Comparative Therapeutic Trial of Nitrogen Mustard and Triethylene Thiophosphoramide[J]. Journal of Chronic Diseases, 1960, 11(1): 7–33

    Article  Google Scholar 

  2. Shankar S, Srivastava RK. Enhancement of Therapeutic Potential of TRAIL by Cancer Chemotherapy and Irradiation: Mechanisms and Clinical Implications[J]. Drug Resistance Updates, 2004, 7(2): 139–156

    Article  Google Scholar 

  3. Pastorino F, Brignole C, Di Paolo D, et al. Targeting Liposomal Chemotherapy Via Both Tumor Cell-specific and Tumor Vasculature-specific Ligands Potentiates Therapeutic Efficacy[J]. Cancer Research, 2006, 66(20): 10 073–10 082

    Article  Google Scholar 

  4. Kintzel PE, Dorr RT. Anticancer Drug Renal Toxicity and Elimination: Dosing Guidelines for Altered Renal Function[J]. Cancer Treatment Reviews, 1995, 21(1): 33–64

    Article  Google Scholar 

  5. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems[J]. Journal of Pharmacy and Pharmacology, 2013, 65(2): 157–170

    Article  Google Scholar 

  6. Bracci L, Schiavoni G, Sistigu A, et al. Immune-based Mechanisms of Cytotoxic Chemotherapy: Implications for the Design of Novel and Rationale-based Combined Treatments Against Cancer[J]. Cell Death & Differentiation, 2014, 21(1): 15–25

    Article  Google Scholar 

  7. Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in Combined Treatment of Cancer[J]. The Lancet Oncology, 2002, 3(8): 487–497

    Article  Google Scholar 

  8. Kulshrestha P, Gogoi M, Bahadur D, et al. In vitro Application of Paclitaxel Loaded Magnetoliposomes for Combined Chemotherapy and Hyperthermia[J]. Colloids and Surfaces B: Biointerfaces, 2012, 96: 1–7

    Article  Google Scholar 

  9. Ciofani G, Riggio C, Raffa V, et al. A Bi-modal Approach Against Cancer: Magnetic Alginate Nanoparticles for Combined Chemotherapy and Hyperthermia[J]. Medical Hypotheses, 2009, 73(1): 80–82

    Article  Google Scholar 

  10. O’Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal Tumor Ablation in Mice Using Near Infrared-absorbing Nanoparticles[J]. Cancer Letters, 2004, 209(2): 171–176

    Article  Google Scholar 

  11. Tong L, Wei Q, Wei A, et al. Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects[J]. Photochemistry and Photobiology, 2009, 85(1): 21–32

    Article  Google Scholar 

  12. Huang X, El-Sayed IH, Qian W, et al. Cancer Cell Imaging and Photothermal Therapy in the Near-infrared Region by Using Gold Nanorods[J]. Journal of the American Chemical Society, 2006, 128(6): 2 115–2 120

    Article  Google Scholar 

  13. Chen J, Glaus C, Laforest R, et al. Gold Nanocages as Photothermal Transducers for Cancer Treatment[J]. Small, 2010, 6(7): 811–817

    Article  Google Scholar 

  14. Shi X, Gong H, Li Y, et al. Graphene-based Magnetic Plasmonic Nanocomposite for Dual Bioimaging and Photothermal Therapy[J]. Biomaterials, 2013, 34(20): 4 786–4 793

    Article  Google Scholar 

  15. Shen S, Tang H, Zhang X, et al. Targeting Mesoporous Silica-encapsulated Gold Nanorods for Chemo-photothermal Therapy with Near-infrared Radiation[J]. Biomaterials, 2013, 34(12): 3 150–3 158

    Article  Google Scholar 

  16. Zhang X, Guo C, Wang X, et al. Synthesis and Characterization of Bimodal Mesoporous Silica[J]. Journal of Wuhan University of Technology- Mater. Sci. Ed., 2012, 27(6): 1 084–1 088

    Article  Google Scholar 

  17. Zhang Z, Wang L, Wang J, et al. Mesoporous Silica-coated Gold Nanorods as a Light-mediated Multifunctional Theranostic Platform for Cancer Treatment[J]. Advanced Materials, 2012, 24(11): 1418–1423

    Article  Google Scholar 

  18. Huang P, Bao L, Zhang C, et al. Folic Acid-conjugated Silica-modified Gold Nanorods for X-ray/CT Imaging-guided Dual-mode Radiation and Photo-thermal Therapy[J]. Biomaterials, 2011, 32(36): 9 796–9 809

    Article  Google Scholar 

  19. Zhang L, Chen Y, Xu H, et al. Preparation and Evaluation of an Injectable Chitosan-hyaluronic Acid Hydrogel for Peripheral Nerve Regeneration[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(6): 1 401–1 407

    Article  Google Scholar 

  20. Hu Y, Zheng M, Dong X, et al. Preparation and Characterization of Alginate- hyaluronic Acid-chitosan Based Composite Gel Beads[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(6): 1 297–1 303

    Article  Google Scholar 

  21. Yu M, Jambhrunkar S, Thorn P, et al. Hyaluronic Acid Modified Mesoporous Silica Nanoparticles for Targeted Drug Delivery to CD44-overexpressing Cancer Cells[J]. Nanoscale, 2013, 5(1): 178–183

    Article  Google Scholar 

  22. Hodivala-Dilke K. αvβ3 Integrin and Angiogenesis: a Moody Integrin in a Changing Environment[J]. Current Opinion in Cell Biology, 2008, 20(5): 514–519

    Article  Google Scholar 

  23. Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic Acid (RGD)-peptide Binds to both Tumor and Tumor-endothelial Cells in Vivo[J]. Cancer Research, 2002, 62(18): 5 139–5 143

    Google Scholar 

  24. Ouasti S, Kingham PJ, Terenghi G, et al. The CD44/Integrins Interplay and the Significance of Receptor Binding and Re-presentation in the Uptake of RGD-functionalized Hyaluronic Acid[J]. Biomaterials, 2012, 33(4): 1 120–1 134

    Article  Google Scholar 

  25. Xu H, Wang Z, Li Y, et al. Preparation and Characterization of a Dual- receptor Mesoporous Silica Nanoparticle-hyaluronic Acid-RGD Peptide Targeting Drug Delivery System[J]. RSC Advances, 2016, 6(46): 40 427–40 435

    Article  Google Scholar 

  26. Nikoobakht B, El-Sayed MA. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-mediated Growth Method[J]. Chemistry of Materials, 2003, 15(10): 1 957–1 962

    Article  Google Scholar 

  27. Gorelikov I, Matsuura N. Single-step Coating of Mesoporous Silica on Cetyltrimethyl Ammonium Bromide-capped Nanoparticles[J]. Nano letters, 2008, 8(1): 369–373

    Article  Google Scholar 

  28. Riddick TM. Control of Colloid Stability through Zeta Potential: With a Closing Chapter on Its Relationship to Cardiovascular Disease[M]. Zeta-Meter, Incorporated, 1968

    Google Scholar 

  29. Tian H, Lin L, Chen J, et al. RGD Targeting Hyaluronic Acid Coating System for PEI-PBLG Polycation Gene Carriers[J]. Journal of Controlled Release, 2011, 155(1): 47–53

    Article  Google Scholar 

  30. Ko H, Son S, Bae S, et al. Near-infrared Light-triggered Thermochemotherapy of Cancer Using a Polymer-gold Nanorod Conjugate[J]. Nanotechnology, 2016, 27(17): 175102–1751014

    Article  Google Scholar 

  31. Lim YT, Noh YW, Han JH, et al. Biocompatible Polymer-Nanoparticle- Based Bimodal Imaging Contrast Agents for the Labeling and Tracking of Dendritic Cells[J]. Small, 2008, 4(10): 1640–1645

    Article  Google Scholar 

  32. Chen LB, Zhang F, Wang CC. Rational Synthesis of Magnetic Thermosensitive Microcontainers as Targeting Drug Carriers[J]. Small, 2009, 5(5): 621–628

    Article  Google Scholar 

  33. Bordon KCF, Perino MG, Giglio JR, et al. Isolation, Enzymatic Characterization and Antiedematogenic Activity of the First Reported Rattlesnake Hyaluronidase from Crotalus durissus Terrificus Venom[J]. Biochimie, 2012, 94(12): 2 740–2 748

    Article  Google Scholar 

  34. Zhang W, Guo Z, Huang D, et al. Synergistic Effect of Chemo-photothermal Therapy Using PEGylated Graphene Oxide[J]. Biomaterials, 2011, 32(33): 8 555–8 561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haixing Xu  (徐海星) or Peihu Xu  (许沛虎).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51473130 and 51572206), the Wuhan Huanghe excellence plan and Entrepreneurship Training Program of Wuhan University and Technology (Nos. 20171049720018, 20171049720019, and 20171049720009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Gao, Y., Xu, H. et al. Hyaluronic Acid-RGD Peptide Conjugated Mesoporous Silica-coated Gold Nanorods for Cancer Dual-targeted Chemo-photothermal Therapy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 512–523 (2018). https://doi.org/10.1007/s11595-018-1853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1853-4

Key words

Navigation