Skip to main content
Log in

Heteropolyacid (H3PW12O40) supported MCM-41: An effective solid acid catalyst for the dehydration of glycerol to acrolein

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The gas-phase dehydration of glycerol was conducted over HPW/MCM-41 catalysts, which were prepared by impregnation of different amount of H3PW12O40 (HPW) on the MCM-41 support. The samples were characterized by XRD, N2 physisorption, FTIR, NH3-TPD, and pyridine-FTIR measurements. N2 physisorption results suggested that the uniform framework of MCM-41 could still be well maintained after modified with HPW. Pyridine-FTIR experiments indicate that HPW modified MCM-41 can generate rich Brønsted acid sites. Moreover, Brønsted acid sites facilitated to improve acrolein selectivity. Under the optimized reaction conditions: 40wt% HPW loading, 20% glycerol concentration, and 320 °C reaction temperature, the glycerol conversion and acrolein selectivity reach 85% and 80%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu YL, Cui NY, Yu QJ, et al. Study on the Influence of Channel Structure Properties in the Dehydration of Glycerol to Acrolein over H-zeolite Catalysts[J]. Appl. Catal. A: Gen., 2012, 429–430: 9–16

    Article  Google Scholar 

  2. Katryniok B, Paul S, Bellière-Baca V, et al. Glycerol Dehydration to Acrolein in the Context of New Uses of Glycerol[J]. Green. Chem., 2010, 12: 2 079–2 098

    Article  Google Scholar 

  3. Okuhara T. Microporous Heteropoly Compounds and Their Shape Selective Catalysis[J]. Appl. Catal. A: Gen., 2003, 256(1-2): 213–224

    Article  Google Scholar 

  4. Holclajtner-Antunović I, Mioč UB, Todorović M, et al. Characterization of Potassium Salts of 12-tungstophosphoric Acid[J]. Mater. Res. Bull., 2010, 45(11): 1 679–1 684

    Article  Google Scholar 

  5. Chai SH, Wang HP, Liang Y, et al. Sustainable Production of Acrolein: Gas-Phase Dehydration of Glycerol over 12-tungstophosphoric Acid Supported on ZrO2 and SiO2[J]. Green. Chem., 2008, 10: 1 087–1 093

    Article  Google Scholar 

  6. Tropecêlo AI, Casimiro MH, Fonseca IM, et al. Esterification of Free Fatty Acids to Biodiesel over Heteropolyacids Immobilized on Mesoporous Silica[J]. Appl. Catal. A: Gen., 2010, 390(1-2): 183–189

    Article  Google Scholar 

  7. Ferreira P, Fonseca IM, Ramos AM, et al. Acetylation of Glycerol over Heteropolyacids Supported on Activated Carbon[J]. Catal. Comm., 2011, 12(7): 573–576

    Article  Google Scholar 

  8. Kim YC, Jeong JY, Hwang JY, et al. Incorporation of Heteropoly Acid, Tungstophosphoric Acid within MCM-41 via Impregnation and Direct Synthesis Methods for the Fabrication of Composite Membrane of DMFC[J]. J. Membrane. Sci., 2008, 325(1): 252–261

    Article  Google Scholar 

  9. Wang LJ, Li D, Wang R, et al. Study on Humidity Sensing Property Based on Li-doped Mesoporous Silica MCM-41[J]. Sensor. Actuat. B: Chem., 2008, 133(2): 622–627

    Article  Google Scholar 

  10. Beck JS, Vartuli JC, Roth WJ, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. J. Am. Chem. Soc., 1992, 114(27): 10 834–10 843

    Article  Google Scholar 

  11. Braga PRS, Costa AA, de Freitas EF, et al. Intramolecular Cyclization of (+)-Citronellal using Supported 12-tungstophosphoric Acid on MCM-41[J]. J. Mol. Catal. A: Chem., 2012, 358: 99–105

    Article  Google Scholar 

  12. Liu Y, Xu L, Xu BB, et al. Toluene Alkylation with 1-octene over Supported Heteropoly Acids on MCM-41 Catalysts[J]. J. Mol. Catal. A: Chem., 2009, 297(2): 86–92

    Article  Google Scholar 

  13. Jalil PA, Al-Daous MA, Al-Arfaj ARA, et al. Characterization of Tungstophosphoric Acid Supported on MCM-41 Mesoporous Silica using n-hexane Cracking, Benzene Adsorption, and X-ray Diffraction[J]. Appl. Catal. A: Gen., 2001, 207(1-2): 159–171

    Article  Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism[J]. Nature, 1992, 359: 710–712

    Article  Google Scholar 

  15. Khder AERS, Hassan HMA, EI-Shall MS. Acid Catalyzed Organic Transformations by Heteropoly Tungstophosphoric Acid Supported on MCM-41[J]. Appl. Catal. A: Gen., 2012, 411–412: 77–86

    Article  Google Scholar 

  16. Pizzio LR, Vázquez PG, Cáceres CV, et al. Supported Keggin Type Heteropolycompounds for Ecofriendly Reactions[J]. Appl. Catal. A: Gen., 2003, 256(1-2): 125–139

    Article  Google Scholar 

  17. Poh NE, Nur H, Muhid MNM, et al. Sulphated AlMCM-41: Mesoporous Solid Brønsted Acid Catalyst for Dibenzoylation of Biphenyl[J]. Catal. Today, 2006, 114(2-3): 257–262

    Article  Google Scholar 

  18. Xia QH, Hidajat K, Kawi S. Structure, Acidity, and Catalytic Activity of Mesoporous Acid Catalysts for the Gas-Phase Synthesis of MTBE from MeOH and ButOH[J]. J. Catal., 2002, 209(2): 433–444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Shao  (邵荣).

Additional information

Funded by the National Natural Science Foundation of China (No. 21303154)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Ma, T., Yun, Z. et al. Heteropolyacid (H3PW12O40) supported MCM-41: An effective solid acid catalyst for the dehydration of glycerol to acrolein. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 1511–1516 (2017). https://doi.org/10.1007/s11595-017-1776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1776-6

Key words

Navigation