Skip to main content
Log in

Electrochemical preparation of V2O3 from NaVO3 and its reduction mechanism

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Vanadium trioxide (V2O3) was directly prepared by NaVO3 electrolysis in NaCl molten salts. Electrolysis products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The existing state and electrochemical behavior of NaVO3 were also studied. The results indicated that V2O3 can be obtained from NaVO3. VC and C were also formed at high cell voltage, high temperature, and long electrolysis time. During electrolysis, NaVO3 was dissociated to Na+ and VO3 in NaCl molten salt. NaVO3 was initially electro- reduced to V2O3 on cathode and Na2O was released simultaneously. Na2CO3 was formed due to the reaction between Na2O and CO2. The production of C was ascribed to the electro-reduction of CO3 2−. VC was produced due to the reaction between C and V2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y F, Zhang F F, Yu L, et al. Synthesis and Characterization of Belt-like VO2(B)@carbon and V2O3@carbon Core-shell Structured Composites[J]. Colloid Surface A, 2012, 396(20): 144–152

    Article  Google Scholar 

  2. Zheng C M, Zhang X M, He S, et al. Preparation and Characterization of Spherical V2O3 Nano Powder[J]. J. Solid State Chem., 2003, 170: 221–226

    Article  Google Scholar 

  3. Chen W, Xu Q, Cui W Q. Effects of Quenching Treatment on the Structure and Electrical Property in Doped V2O3 System[J]. J. Mater. Sci., 1997, 32(4): 1049–1053

    Article  Google Scholar 

  4. Kong F Y, Li M, Li D B, et al. Synthesis and Characterization of V2O3 Nanocrystals by Plasma Hydrogen Reduction[J]. J. Crystal Growth, 2012, 346: 22–26

    Article  Google Scholar 

  5. Kittaka S, Sasaki S, Morimoto T. Spherical Particles and Their Surface Properties[J]. J. Mater. Sci., 1987, 22(2): 557–564

    Article  Google Scholar 

  6. Moskalyk R R, Alfantazi A M. Processing of Vanadium: a Review[J]. Miner. Eng., 2003, 16(9): 793–805

    Article  Google Scholar 

  7. Li X S, Xie B, Wang G E, et al. Oxidation Process of Low-grade Vanadium Slag in Presence of Na2CO3[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(8): 1860–1867

    Article  Google Scholar 

  8. Aarabi-Karasgani M, Rashchi F, Mostoufi N, et al. Leaching of Vanadium from LD Converter Slag Using Sulfuric Acid[J]. Hydrometallurgy, 2010, 102(1-2): 14–21

    Article  Google Scholar 

  9. Shirinov E G, Gasanly Z G, Ganbarov D M. Reduction of Vanadium from Alkaline Solutions[J]. Russ. J. Appl. Chem., 2009, 82(7): 1230–1233

    Article  Google Scholar 

  10. Lingane J J. Polarographic Characteristics of Vanadium in its Various Oxidation States[J]. J. Am. Chem. Soc., 1945, 67(2): 182–188

    Article  Google Scholar 

  11. Schmidt R W, Reilly C N. Concerning the Effect of Surface-active Substances on Polarographic Current[J]. J. Am. Chem. Soc., 1958, 80(9): 2087–2094

    Article  Google Scholar 

  12. Cakir S, Bicer E. Voltammetric and Spectroscopic Studies of Vanadium( V)-Nicotinamide Interactions at Physiological pH[J]. Turk. J. Chem., 2007, 31: 223–227

    Google Scholar 

  13. Abouatallah R, Kirk D, Thorpe S, et al. Reactivation of Nickel Cathodes by Dissolved Vanadium Species during Hydrogen Evolution in Alkaline Media[J]. Electrochim. Acta, 2001, 47(4): 613–621

    Article  Google Scholar 

  14. Abouatallah R M, Kirk D W, Thorpe S J. Characterization of Vanadium Deposit Formation at a Hydrogen Evolving Electrode in Alkaline Media[J]. J. Electrochem. Soc., 2001, 148(9): E357–E363

    Article  Google Scholar 

  15. Birke R L, Santa Cruz T D. Electroreduction of Vanadium(V) in the Presence and Absence of Chlorite Ion[J]. J. Electrochem. Soc., 1973, 120(3): 366–373

    Article  Google Scholar 

  16. Liu B, Zheng S L, Wang S N, et al. The Redox Behavior of Vanadium in Alkaline Solutions by Cyclic Voltammetry Method[J]. Electrochim. Acta, 2012, 76: 262–269

    Article  Google Scholar 

  17. Gasviani N A, Khutsishvili M S, Abazadze L M. Electrochemical Reduction of Sodium Metavanadate in an Equimolar KCl–NaCl Melt[J]. Russ. J. Electrochem., 2006, 42(9): 931–937

    Article  Google Scholar 

  18. Solheim A. Liquidus Temperature Depression in Cryolitic Melts[J]. Metall. Mater. Trans. B, 2012, 43B: 995–1000

    Article  Google Scholar 

  19. Solheim A, Rolseth S, Skybakmoen E, et al. Liquidus Temperatures for Primary Crystallization of Cryolite in Molten Salt Systems of Interest for Aluminum Electrolysis[J]. Metall. Mater. Trans. B, 1996, 27B: 739–744

    Article  Google Scholar 

  20. Hur J M, Cha J S, Choi E Y. Can carbon Be an Anode for Electrochemical Reduction in a LiCl-Li2O Molten Salt[J]. ECS Electrochem. Lett., 2014, 3(10): E5–E7

    Article  Google Scholar 

  21. Jiao S Q, Fray D J. Development of an Inert Anode for Electrowinning in Calcium Chloride–Calcium Oxide Melts[J]. Metall. Mater. Trans. B, 2010, 41(1): 74–79

    Article  Google Scholar 

  22. Kruesi W H, Fray D J. Fundamental Study of the Anodic and Cathodic Reactions during the Electrolysis of a Lithium Carbonate-Lithium Chloride Melt Using a Carbon Anode[J]. J. Appl. Electrochem., 1994, 24(11): 1102–1108

    Article  Google Scholar 

  23. Ijije H V, Lawrence R C, Chen G Z. Carbon Electrodeposition in Molten Salts: Electrode Reactions and Applications[J]. RSC Adv., 2014, 67: 35808–35817

    Article  Google Scholar 

  24. Li L X, Shi Z N, Gao B L, et al. Electrochemical Behavior of Carbonate Ion in the LiF–NaF–Li2CO3 System[J]. Electrochemistry, 2014, 82(12): 1072–1077

    Article  Google Scholar 

  25. Kaplan B, Groult H, Barhoun A, et al. Synthesis and Structural Characterization of Carbon Powder by Electrolytic Reduction of Molten Li-2CO3-Na2CO3-K2CO3[J]. J. Electrochem. Soc., 2002, 149(5): D72–D78

    Article  Google Scholar 

  26. Kawamura H, Ito Y. Electrodeposition of Cohesive Carbon Films on Aluminum in a LiCl–KCl–K2CO3 Melt[J]. J. Appl. Electrochem., 2000, 30: 571–574

    Article  Google Scholar 

  27. Keer H V, Dickerson D L, Kuwamoto H, et al. Heat Capacity of Pure and Doped V2O3 Single Crystals[J]. J. Solid State Chem., 1976, 19: 95–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyong Wang  (王明涌).

Additional information

This work is supported by the National Basic Research Program of China (973 Program) (No.2013CB632606), National Natural Science Foundation of China (Nos.51474200, 51422405) and Youth Innovation Promotion Association, CAS (No.2015036)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, W., Wang, M., Gong, X. et al. Electrochemical preparation of V2O3 from NaVO3 and its reduction mechanism. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 1019–1024 (2017). https://doi.org/10.1007/s11595-017-1705-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1705-8

Key words

Navigation