Skip to main content
Log in

Fast mineralization of densely packed hydroxyapatite layers in the presence of overexpressed recombinant amelogenin

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Learning from the process of biominerals formation provides tremendous ideas for developing advanced synthesis techniques. According to the structure formation of tooth enamel, a recombinant amelogenin his-AmelX was designed and constructed. The protein was over-expressed and could be conveniently purified in one-step heat treatment. The mineralization process of hydroxyapatite was initiated by enzyme AP and regulated by the recombinant amelogenin. Effects of solution pH value and mineralization duration were studied. It was demonstrated that his-AmelX could induce the nucleation of apatite and quicken the growth rate at pH 7.0-7.4, while impeded hydroxyapatite growth at pH 6.8. Moreover, a much denser layer of hydroxyapatite was achieved with the addition of his-AmelX. The present study may not only provide insight into the formation of natural biomaterials but also open a new path to prepare materials under environmentally benign conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clegg WJ, Kendall K, Alford NM, et al. A Simple Way to Make Tough Ceramics[J]. Nature, 1990, 347: 455–457

    Article  Google Scholar 

  2. Liu K, Du J, Wu J, et al. Superhydrophobic Gecko Feet with High Adhesive Forces Towards Water and Their Bio-inspired Materials[J]. Nanoscale, 2012, 4(3): 768–772

    Article  Google Scholar 

  3. Zheng Y, Bai H, Huang Z, et al. Directional Water Collection on Wetted Spider Silk[J]. Nat. Let., 2010, 463: 640–643

    Article  Google Scholar 

  4. Bouville F, Maire E, Meille S, et al. Strong, Tough and Stiff Bioinspired Ceramics from Brittle Constituents[J]. Nat. Mater., 2014, 13: 508–514

    Article  Google Scholar 

  5. Munch E, Launey ME, Alsem DH, et al. Tough, Bio-inspired Hybrid Materials[J]. Science, 2008, 322(5907): 1516–1520

    Article  Google Scholar 

  6. Meyers MA, McKittrick J, Chen PY. Structural Biological Materials: Critical Mechanics-materials Connections[J]. Science, 2013, 339(6121): 773–779

    Article  Google Scholar 

  7. Feng L, Li S, Li Y, et al. Super-hydrophobic Surfaces: From Natural to Artificial[J]. Adv. Mater., 2002, 14(24): 1857–1860

    Article  Google Scholar 

  8. Chu Z, Seeger S. Superamphiphobic Surfaces[J]. Chem. Sov. Rev., 2014, 43(8): 2784–2798

    Article  Google Scholar 

  9. Liu M, Zheng Y, Zhai J, et al. Bioinspired Super-antiwetting Interfaces with Special Liquid-solid Adhension[J]. Accounts of Chemical Research, 43 (3): 368–377

  10. Mann S, Archibald DD, Didymus JM, et al. Crystallization at Inorganicorganic Interfaces: Biominerals and Biomimetic Synthesis [J]. Science, 1993, 261(5126): 1286–1292

    Article  Google Scholar 

  11. Sanchez C, Arribart H, Guille MMG. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems[J]. Nat. Mater., 2005, 4: 277–288

    Article  Google Scholar 

  12. Xie JJ, Xie H, Su BL, et al. Mussel-directed Synthesis of Nitrogen-Doped Anatase TiO2[J]. Angew. Chem., 2016, 128: 3083–3087

    Article  Google Scholar 

  13. Ping H, Xie H, Su BL, et al. Organized Intrafibrillar Mineralization, Directed by a Rationally Designed Multi-functional Protein[J]. J. Mater. Chem. B, 2015, 3: 4496–4502

    Article  Google Scholar 

  14. Wang XL, Xie H, Su BL, et al. Bio-process Inspired Synthesis of Vaterite (CaCO3), Directed by a Rationally Designed Multifunctional Protein, ChiCaSifi [J]. J. Mater. Chem. B, 2015, 3: 5951–5956

    Article  Google Scholar 

  15. Zeng H, Xie JJ, Xie H, et al. Bio-process Inspired Synthesis of Hierarchically Porous Nitrogen-doped TiO2 with High Visible-light Photocatalytic Activity[J]. J. Mater. Chem. A, 2015, 3: 19588–19596

    Article  Google Scholar 

  16. Mann S. Biomineralization. Oxford: Oxford Univ. Press, 2001

    Google Scholar 

  17. Hoang QQ, Sicheri F, Howard AJ, et al. Bone Recognition Mechanism of Porcine Osteocalcin from Crystal Structure[J]. Nature, 425: 977–980

  18. Du C, Falini G, Fermani S, et al. Supermolecular Assembly of Amelogenin Nanospheres into Birefringent Microribbons[J]. Science, 2005, 307(5714): 1450–1454

    Article  Google Scholar 

  19. Moradian-Oldak J. Protein-mediated Enamel Mineralization[J]. Front Biosci., 17: 1996–2023

  20. Cuy JL, Mann AB, Livi KJ, et al. Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel[J]. Arch. Oral Biol., 2002, 47(4): 281–291

    Article  Google Scholar 

  21. Ge J, Cui FZ, Wang XM, et al. Property Variations in the Prism and the Organic Sheath within Enamel by Nanoindentation[J]. Biomaterials, 2005, 26(16): 3333–3339

    Article  Google Scholar 

  22. Popowics TE, Rensberger JM, Herring SW. Enamel Microstructure and Microstrain in the Fracture of Human and Pig Molar Cusps[J]. Arch. Oral Biol., 2004, 49: 595–605

    Article  Google Scholar 

  23. Bonar LC, Glimcher MJ, Mechanic GL. The Molecular Structure of the Neutral-soluble Proteins of Embryonic Bovine Enamel in the Solid State[J]. J. Ultrastruct. Res., 1965, 13(3): 308–317

    Article  Google Scholar 

  24. Renugopalakrishnan V, Strawich ES, Horowitz PM, et al. Studies of the Secondary Structures of Amelogenin from Bovine Tooth Enamel[J]. Biochemistry, 1986, 25: 4879–4887

    Article  Google Scholar 

  25. Goto Y, Kogure E, Takagi T, et al. Molecular Conformation of Porcine Amelogenin in Solution: Three Folding Units at the N-terminal, Central and C-termianal Regions[J]. J. Biochem., 1993, 113(113): 55–60

    Article  Google Scholar 

  26. Renugopalakrishnan V, Pattabiraman N, Prabhakaran M, et al. Tooth Enamel Protein, Amelogenin, Has a Probable Beta-spiral Internal Channel, Gln112-Leu138, within a Single Polypeptide Chain: Preliminary Molecular Mechanics and Dynamics Studies[J]. Biopolymers, 1989, 28(1): 297–303

    Article  Google Scholar 

  27. Zhang X, Ramirez BE, Liao X, et al. Amelogenin Supramolecular Assembly in Nanospheres Defined by a Complex Helix-coil-PP? Helix 3D-structure[J]. PLoS ONE, 2011, 6(10): e24952

    Article  Google Scholar 

  28. Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, et al. pH Triggered Self-assembly of Native and Recombinant Amelogenins under Physiological pH and Temperature in Vitro[J]. J. Struct. Biol., 2007, 160: 57–69

    Article  Google Scholar 

  29. Fang P, Conway JF, Margolis HC, et al. Hierarchical Self-assembly of Amelogenin and the Regulation of Biomineralization at the Nanoscale[J]. PNAS, 2011, 108(34): 14097–14102

    Article  Google Scholar 

  30. Fan Y, Sun Z, Moradian-Oldak J. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid Etched Human Enamel [J]. Caries Res., 2009, 43: 132–136

    Article  Google Scholar 

  31. Wen HB, Moradian-Oldak J, Fincham AG. Modulation of Apatite Crystal Growth on Bioglass by Recombinant Amelogenin[J]. Biomaterials, 1999, 20: 1717–1725

    Article  Google Scholar 

  32. Iijima M, Moradian-Oldak J. Control of Apatite Crystal Growth in a Fluoride Containing Amelogenin-rich Matri [J]. Biomaterials, 2005, 26: 1595–1603

    Article  Google Scholar 

  33. Fan Y, Sun Z, Wang R, et al. Enamel Inspired Nanocomposite Fabrication Through Amelogenin Supramolecular Assembly[J]. Biomaterials, 2007, 28: 3034–3042

    Article  Google Scholar 

  34. Fan Y, Nelson JR, Alvarez JR, et al. Amelogenin-assisted ex Vivo Remineralization of Human Enamel: Effects of Supersaturation Degree and Fluride Concentration[J]. Acta Biomaterialia, 2011, 7: 2293–2302

    Article  Google Scholar 

  35. Uskokovic V, Li W, Habelitz S. Amelogenin as a Promoter of Nucleation and Crystal Growth of Apatite[J]. Journal of Crystal Growth, 2011, 316: 106–117

    Article  Google Scholar 

  36. Fan Y, Sun Z, Moradian-Oldak J. Controlled Remineralization of Enamel in the Presence of Amelogenin and Fluoride[J]. Biomaterials, 2009, 30: 478–483

    Article  Google Scholar 

  37. Ruan Q, Zhang Y, Yang X, et al. An Amelogenin-chitosan Matrix Promotes Assembly of an Enamel-like Layer with a Dense Interface[J]. Acta Biomaterialia, 2013, 9: 7289–7297

    Article  Google Scholar 

  38. Mukherjee K, Ruan Q, Liberman D. Repairing Human Tooth Enamel with Leucin-rich Amelogenin Peptide-chitosan Hydrogel[J]. J. Mater. Res., 2016, 31: 556–563

    Article  Google Scholar 

  39. Taylor AL, Haze-Filderman A, Blumenfeld A, et al. High Yield of Biologically Active Recombinant Human Amelogenin Using the Baculovirus Expression System[J]. Protein Expression and Purification, 2006, 45: 43–53

    Article  Google Scholar 

  40. Svensson J, Andersson C, Reseland JE, et al. Histidine Tag Fusion Increases Expression Levels of Active Recombinant Amelogenin in Escherichia Coli[J]. Protein Expression and Purification, 2006, 48: 134–141

    Article  Google Scholar 

  41. Bonde JS, Bulow L. One-step Purification of Recombinant Human Amelogenin and Use of Amelogenin as a Fusion Partner[J]. PLoS ONE, 2012, 7(3): e33269

    Article  Google Scholar 

  42. Tanahashi M, Matsuda T. Surface Functional Group Dependence on Apatite Formation on Self-assembled Monolayers in a Simulated Body Fluid[J]. J. Biomed. Mater. Res., 1997, 34(3): 305–315

    Article  Google Scholar 

  43. Kannan S, Ferreira JMF. Synthesis and Thermal Stability of Hydroxyapatite-ß-tricalcium Phosphate Composites with Cosubstituted Sodium, Magnesium, and Fluorine[J]. Chem. Mater., 2006, 18: 198–203

    Article  Google Scholar 

  44. Tarasevich BJ, Lea S, Bernt W, et al. Adsorption of Amelogenin onto Self-assembled and Fluoroapatite Surfaces[J]. J. Phys. Chem. B, 2009, 113: 1833–1842

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menghu Wang  (王梦湖) or Zhengyi Fu  (傅正义).

Additional information

Funded by the National Natural Science Foundation of China (51521001), the Ministry of Science and Technology of China (2015DFR50650), and the Fundamental Research Funds for the Central University (WUT 2016IB006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xie, H., Xie, J. et al. Fast mineralization of densely packed hydroxyapatite layers in the presence of overexpressed recombinant amelogenin. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 256–263 (2017). https://doi.org/10.1007/s11595-017-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1589-7

Key words

Navigation