Skip to main content
Log in

Synthesis, characterization and application of a novel carbon bridged half-metallocene chromium catalyst for methyl methacrylate polymerization

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A new carbon bridged cyclopentadienyl chromium complex of the type [(C5H4)C(CH3)2 CH2(C5H4N)]CrCl2 was prepared by treatment of CrCl3·(THF)3 in THF solution with the lithium salt of ligand containing cyclopentadienyl and pyridyl groups. The chromium complex was characterized by 1H NMR and elemental analysis(EA), and the crystal structure was determined by X-ray diffraction analysis. Activated by Al(i-Bu)3, the chromium complex displayed a very high activity for methyl methacrylate (MMA) polymerization. After 24 hours,more than 95.5% MMA was converted to polymethyl methacrylate (PMMA) with a viscosity average molecular weight (W η) of 416000 g·mol−1 at 60 °C for MMA/Al(i-Bu)3/chromium catalyst molar ratio of up to 2000:20:1. Effects of temperature, molar ratios of MMA/catalyst and catalyst/cocatalyst on the polymerization have been studied. The high conversion of MMA and high molecular weight of PMMA with narrow molecular weight distribution is caused by the unique stable active site formed by the new chromium complex and aluminum cocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang GS, Zhu SM, Yan DY. Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by AIBN/FeCl3/Isophthalic Acid System[J]. Chin. Sci. Bull., 2001, 46(13), 1–3

    Article  Google Scholar 

  2. Xue L, Agarwal US, Lemstra PJ. High Molecular Weight PMMA by ATRP[J]. Macromolecules, 2002, 35(22): 8 650–8 652

    Article  Google Scholar 

  3. Singha NK, Rimmer S, Klumperman B. Mass Spectrometry of Poly (Methyl Methacrylate)(PMMA) Prepared by Atom Transfer Radical Ppolymerization (ATRP)[J]. Eur. Polym. J., 2004, 40(1): 159–163

    Article  Google Scholar 

  4. Huang Z, Zhang Y, Li H, et al. A Novel Immobilized Cobalt (II)/Copper (II) Bimetallic Catalyst for Atom Transfer Radical Polymerization (ATRP) of Methyl Methacrylate[J]. Appl. Catal. A-Gen., 2007, 332(2): 192–199

    Article  Google Scholar 

  5. Barrientos-Ramírez S, Montes de Oca-Ramírez G, Ramos-Fernández EV, et al. Influence of the Surface Chemistry of Activated Carbons on the ATRP Catalysis of Methyl Methacrylate Polymerization[J]. Appl. Catal. A-Gen., 2011, 397(1):225–233

    Article  Google Scholar 

  6. Edwards HGM, Johal KS, Johnson A F. FT-Raman Spectroscopic Monitoring of the Group-transfer Polymerisation of Methyl Methacrylate[J]. Vib. Spectrosc, 2006, 41(2): 160–169

    Article  Google Scholar 

  7. Begum F, Simon SL. Modeling Methyl Methacrylate Free Radical Polymerization in Nanoporous Confinement[J]. Polymer, 2011, 52(7):1 539–1 545

    Article  Google Scholar 

  8. Zhao H, Simon SL. Methyl Methacrylate Polymerization in Nanoporous Vonfinement [J]. Polymer, 2011, 52(18): 4 093–4 098

    Article  Google Scholar 

  9. Begum F, Zhao H, Simon SL. Modeling Methyl Methacrylate Free Radical Polymerization: Reaction in Hydrophobic Nanopores[J]. Polymer, 2012,53(15): 3 261–3 268

    Article  Google Scholar 

  10. Ihara E, Amamoto M, Inoue K. Anionic Polymerization of Methyl Methacrylate in the Presence of Chromium Carbonyl [Cr (CO)6][J]. Polym. Bul., 2003, 50(4): 213–218

    Google Scholar 

  11. Yasuda H, Yamamoto H, Yamashita M, et al. Synthesis of High Molecular Weight poly (Methyl Methacrylate) with Extremely Low Polydispersity by the Unique Function of Organolanthanide (III) Complexes[J]. Macromolecules, 1993, 26(26): 7 134–7 143

    Article  Google Scholar 

  12. Yasuda H, Tamai H. Characteristics of Rare Earth Systems as Polymerization Initiators[J]. Prog. Polym. Sci., 1993, 18(6): 1 097–1 139

    Article  Google Scholar 

  13. Ihara E, Morimoto M, Yasuda H. Living Polymerizations and Copolymerizations of Alkyl Acrylates by the Unique Catalysis of Rare Earth Metal Complexes[J]. Macromolecules, 1995, 28(23): 7 886–7 892

    Article  Google Scholar 

  14. Desurmont G, Li Y, Yasuda H, et al. Reaction Pathway for the Formation of Binuclear Samarocene Hydride from Monomeric Alkyl Samarocene Derivative and the Effective Catalysis of Samarocene Hydride for the Block Copolymerization of Ethylene with Polar Monomers[J]. Organometallics, 2000, 19(10): 1 811–1 813

    Article  Google Scholar 

  15. Collins S, Ward DG. Group-transfer Polymerization Using Cationic Zirconocene Compounds[J]. J. Am. Chem. Soc., 1992, 114(13): 5 460–5 462

    Article  Google Scholar 

  16. Collins S, Ward DG, Suddaby K H. Group-transfer Polymerization Using Metallocene Catalysts: Propagation Mechanisms and Control of Polymer Stereochemistry[J]. Macromolecules, 1994, 27(24): 7 222–7 224

    Article  Google Scholar 

  17. Li Y, Ward DG, Reddy SS, et al. Polymerization of Methyl Methacrylate Using Zirconocene Initiators: Polymerization Mechanisms and Applications[J]. Macromolecules, 1997, 30(7): 1 875–1 883

    Article  Google Scholar 

  18. Soga K, Deng H, Yano T, et al. Stereospecific Polymerization of Methyl Methacrylate Initiated by Zirconocene dimethyl/B(C6F5)3 (or Ph3CB(C6F5)4)/Zn (C2H5)2[J]. Macromolecules, 1994, 27(26): 7 938–7 940

    Article  Google Scholar 

  19. Deng H, Shiono T, Soga K. Isospecific Polymerization of Methyl Methacrylate Initiated by Chiral Zirconocenedimethyl/Ph3CB(C6F5)4 in the Presence of Lewis Acid[J]. Macromolecules, 1995, 28(9): 3 067–3 073

    Article  Google Scholar 

  20. Deng H, Soga K. Isotactic Polymerization of Tert-butyl Acrylate with Chiral Zirconocene[J]. Macromolecules, 1996, 29(5): 1 847–1 848

    Article  Google Scholar 

  21. Stuhldreier T, Keul H, Höcker H, et al. Preparation and First X-ray Structure of a Zirconocene β-Keto Ester Enolate[J]. Organometallics, 2000, 19(24): 5 231–5 234.

    Article  Google Scholar 

  22. Frauenrath H, Keul H, Höcker H. Stereospecific Polymerization of Methyl Methacrylate with Single-component Zirconocene Complexes: Control of Stereospecificity via Catalyst Symmetry[J]. Macromolecules, 2001, 34(1): 14–19

    Article  Google Scholar 

  23. Cameron P A, Gibson VC, Graham A J. On the Polymerization of Methyl Methacrylate by Group 4 Metallocenes[J]. Macromolecules, 2000, 33(12): 4 329–4 335

    Article  Google Scholar 

  24. Bolig AD, Chen EYX. Reversal of Polymerization Stereoregulation in Anionic Polymerization of MMA by Chiral Metallocene and Non-Metallocene Initiators: a New Reaction Pathway for Metallocene-initiated MMA Polymerization[J]. J. Am. Chem. Soc., 2001, 123(32):7 943–7 944

    Article  Google Scholar 

  25. Bolig A D, Chen E Y X. Isotactic-b-syndiotactic stereoblock Poly (methyl methacrylate) by Chiral Metallocene/Lewis Acid Hybrid Catalysts[J]. J. Am. Chem. Soc., 2002, 1246](20): 5612–5613

    Article  Google Scholar 

  26. Rodriguez-Delgado A, Mariott W R, Chen E Y X. Synthesis and MMA Polymerization of Chiral Ansa-zirconocene Ester Enolate Complexes with C2-and Cs-ligation[J]. J. Organomet. Chem., 2006, 691(16): 3 490–3 497

    Article  Google Scholar 

  27. Strauch JW, Fauré JL, Bredeau S, et al. (Butadiene) metallocene/B(C6F5)3 Pathway to Catalyst Systems for Stereoselective Methyl Methacrylate Polymerization:Evidence for an Anion Dependent Metallocene Catalyzed Polymerization Process[J]. J. Am. Chem. Soc., 2004, 126(7): 2 089–2 104

    Article  Google Scholar 

  28. Sun JQ, Pan ZD, Hu WQ, et al. Polymerization of Methyl Methacrylate with Ethylene Bridged Heterodinuclear Metallocene of Samarium and Titanium[J]. Eur. Polym. J., 2002, 38(3): 545–549

    Article  Google Scholar 

  29. Qian YL, Bala MD, Yousaf M, et al. Novel 2-propenyl cyclopentadienyl Lanthanide Complexes as Single Component Methyl Methacrylate (MMA) Polymerization Catalysts[J]. J. Mol.Catal. A: Chem., 2002, 188(1): 1–10

    Article  Google Scholar 

  30. Bala M D, Huang J L, Zhang H, et al. Synthesis, Characterization and Application of Organolanthanide Complexes (CH2CHCH2CH2C5H4)2 Ln Cl· 2THF (Ln= Sm, Y, Dy, Er) as methyl methacrylate (MMA) polymerization catalysts[J]. J. Organomet. Chem., 2002, 647(1): 105–113

    Article  Google Scholar 

  31. Stone KJ, Little RD. An Exceptionally Simple and Efficient Method for the Preparation of a Wide Variety of Fulvenes[J]. J. Org. Chem., 1984, 49(11): 1 849–1 853

    Article  Google Scholar 

  32. Herwig W, Zeiss H. Notes: Chromium Trichloride Tetrahydrofuranate[J]. J.Org.Chem., 1958, 23(9): 1 404–1 404

    Article  Google Scholar 

  33. Sheldrick GM. SHELXS-98 Program for the Solution of Crystal Structures[M]. University of Göttingen Press, Göttingen (Germany), 1998

    Google Scholar 

  34. Sheldrick G M. SHELXL-98 Program for the Refinement of Crystal Structures[M].University of Göttingen Press, Göttingen (Germany), 1998

    Google Scholar 

  35. Heinemann O, Jolly P, Krüger C, et al. Bis (indenyl) Chromium Is a Dimer[J]. Organometallics, 1996, 15(26): 5 462–5 463

    Article  Google Scholar 

  36. Döhring A, Göhre J, Jolly P, et al. Donor-Ligand-Substituted Cyclopentadienylchromium (III) Complexes: A New Class of Alkene Polymerization Catalyst. 1. Amino-Substituted Systems[J]. Organometallics, 2000, 19(4): 388–402

    Article  Google Scholar 

  37. Enders M, Fernández P, Ludwig G, et al. New Chromium (III) Complexes as Highly Active Catalysts for Olefin Polymerization[J]. Organometallics, 2001, 20(24): 5 005–5 007

    Article  Google Scholar 

  38. Natta G, Danusso F, Moraglio G. Dilatometrische Eigenschaften und Struktur Isomerer Polymeren des Äthylens und von α-Olefins[J]. Angew.Chem., 1957, 69: 686

    Article  Google Scholar 

  39. Simionescu C, Asandei N, Benedek I, et al. La Copolymerisation du Systeme Binaire Acrylonitrile-methylmethacrylate a l’aide Des Promoteurs du Type Soluble Ziegler-natta Constitues Par le Complexe: Dichlorure du Biscyclopentadienyl-titane-triethyle Aluminium[J]. Eur. Polym. J., 1969, 5(4): 449–462

    Article  Google Scholar 

  40. Hu WQ, Sun JQ, Pan ZD, et al. The Polymerization of Methyl Methacrylate with a New Tin-bridged Yttrocene/Al(i-Bu)3[J]. J. Zhejiang Univ. (Sci.), 2000, 1(2): 157–161

    Article  Google Scholar 

  41. Emmons ED, Kraus RG, Duvvuri SS, et al. High-pressure Infrared Absorption Spectroscopy of Poly (methyl methacrylate)[J]. J. Polym. Sci., Part B: Polym. Phys., 2007, 45(3): 358–367

    Article  Google Scholar 

  42. Kuila T, Bose S, Khanra P, et al. Characterization and Properties of in Situ Emulsion Polymerized Poly (Methyl Methacrylate)/Graphene Nanocomposites[J]. Composites Part A, 2011, 42(11): 1 856–1 861

    Article  Google Scholar 

  43. Wang WP, Liu Y, Li XX, et al. Synthesis and Characteristics of Poly (methyl methacrylate) / Expanded Graphite Nanocomposites[J]. J. Appl. Polym. Sci., 2006, 100(2): 1 427–1 431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzai Cheng  (程正载).

Additional information

Funded by the National Natural Science Foundation of China (No. 51204125), the Natural Science Foundation of Hubei Province ( Nos. 2014CFB812 and 2014CFB810) and the Open Fund Project Funded by the Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province in China (No. WKDM201302)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Gong, K., Wang, Y. et al. Synthesis, characterization and application of a novel carbon bridged half-metallocene chromium catalyst for methyl methacrylate polymerization. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 1294–1301 (2014). https://doi.org/10.1007/s11595-014-1084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-1084-3

Key words

Navigation