Skip to main content
Log in

Preparation of V-doped TiO2 photocatalysts by the solution combustion method and their visible light photocatalysis activities

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A series of nanocrystalline V-doped (0.0–3.0 at.%) TiO2 catalysts have been successfully prepared by the one-step solution combustion method using urea as a fuel. The obtained powders were characterized by XRD, SEM, Raman, XPS and UV-Vis DRS. The effects of V doping concentration on the phase structure and photocatalytic properties were investigated. XRD, Raman, and XPS show that V doping diffuses into TiO2 crystal lattice mainly in the form of V5+ and causes a phase transition from anatase to rutile. V doping can widen the light absorption range of TiO2, with the absorption threshold wavelength shifting from 425 to 625 nm. The photocatalytic activity of V-doped TiO2 powders were evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. It is found that V doping enhances the photocatalytic activity under visible light irradiation and the optimal degradation rate of MO is about 95.8% with 1.0 at% V-doped TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H G Yu, H Irie, Y Shimodaira, et al. An Efficient Visible Light Sensitive Fe(III)-Grafted TiO2 Photocatalyst[J]. J. Phys. Chem. C, 2010, 114 (39): 16 481–16 487

    Article  Google Scholar 

  2. G D Yang, Z Jiang, H H Shi, et al. Preparation of Highly Visible Light Active N-doped TiO2 Photocatalyst[J]. J. Mater. Chem., 2010, 20, 5 301–5 309

    Article  Google Scholar 

  3. T D Bui, A Kimura, S Ikeda, et al. Determination of Oxygen Sources for Oxidation of Benzene on TiO2 Photocatalysts in Aqueous Solutions Containing Molecular Oxygen[J]. J. Am. Chem. Soc., 2010, 132 (24): 8 453–8 458

    Article  Google Scholar 

  4. G Liu, C H Sun, X X Yan, et al. Iodine Doped Anatase TiO2 Photocatalyst with Ultra-long Visible Light Response: Correlation Between Geometric/electronic Structures and Mechanisms[J]. J. Mater. Chem., 2009, 19: 2 822–2 829

    Article  Google Scholar 

  5. S Klosek, D Raftery. Visible Light Driven V-Doped TiO2 Photocatalyst and its Photooxidation of Ethanol[J]. J. Phys. Chem. B, 2001, 105: 2 815–2 819

    Article  Google Scholar 

  6. S In, A Orlov, R Berg, et al. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts[J]. J. Am. Chem. Soc., 2007, 129: 13 790–13 791

    Article  Google Scholar 

  7. X J Quan, Q H Zhao, H Q Tan, et al. Comparative Study of Lanthanide Oxide Doped Titanium Dioxide Photocatalysts Prepared by Coprecipitation and Sol-gel Process[J]. J. Mater. Chem Phys., 2009, 114: 90–98

    Article  Google Scholar 

  8. W Choi, A Termin, M R Hoffmann. The Role of Metal Ion Dopants in Quantum-sized TiO2: Correlation Between Photoreactivity and Charge Carrier Recombination Dynamics[J]. J. Phys. Chem., 1994, 98: 13 669–13 679

    Article  Google Scholar 

  9. X X Yang, C Cao, K Hohn, et al. Highly Visble-light Active C- and V-doped TiO2 for Degradation of Acetaldehyde[J]. J. Catal., 2007, 252: 296–302

    Article  Google Scholar 

  10. S T Martin, C L Morrison, M R Hoffmann. Photochemical Mechanism of Size-quantiezed Vanadium-doped TiO2 Particles[J]. J. Phys. Chem., 1994, 98: 13 695–13 704

    Article  Google Scholar 

  11. Z M Tian, S L Yuan, S Y Yin, et al. Synthesis and Magnetic Properties of Vanadium Doped Anatase TiO2 Nanoparticles[J]. J. Magn. Magn. Mater., 2008, 320: L5–9

    Article  Google Scholar 

  12. M Anpo, Y Ichihashi, M Takeuchi, et al. Design of Unique Titanium Oxide Photocatalysts by an Advanced Metal Ion-implantation Method and Photocatalytic Reactions Under Visible Light Irradiation[J]. Rse. Chem. Intermed., 1998, 24: 143–149

    Article  Google Scholar 

  13. W F Zhou, Q J Liu, Z Q Zhu, et al. Preparation and Properties of Vanadium-doped TiO2 Photocatalysts[J]. J. Phys. D: Appl. Phys., 2010, 43: 035 301–035 306

    Article  Google Scholar 

  14. B S Liu, X L Wang, G F Cai, et al. Low Temperature Fabrication of V-doped TiO2 Nanoparticles, Structure and Photocatalytic Studies[J]. J. Hazard. Mater., 2009, 169: 1 112–1 118

    Article  Google Scholar 

  15. J C S Wu, C Chen. A Visible-light Response Vanadium-doped Titania Nanocatalyst by Sol-gel method[J]. J. Photochem. Photobiol. A, 2004, 163: 509–515

    Article  Google Scholar 

  16. H Yamashita, M Anpo. Application of an Ion Beam Technique for the Design of Visible Light-sensitive, Highly Efficient and Highly Selective Photocatalysts: Ion-implantation and Ionized Cluster Beam Methods[J]. Catal. Surv. Asia, 2004, 8: 35–45

    Article  Google Scholar 

  17. D E Gu, B C Yang, Y D Hu. A Novel Method for Preparing V-doped Titanium Dioxide Thin Film Photocatalysts with High Photocatalytic Activity Under Visible Light Irradiation[J]. Catal. Lett., 2007, 118: 254–259

    Article  Google Scholar 

  18. H Zhang, J F Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights From TiO2[J]. J. Phys. Chem. B, 2000, 104: 3 481–3 487

    Article  Google Scholar 

  19. B Z Tiana, C Z Li, F Gua, et al. Flame Sprayed V-doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light Irradiation[J]. Chem. Eng. J., 2009, 151: 220–227

    Article  Google Scholar 

  20. Z M Wang, G X Yang, P Biswas, et al. Processing of Iron-doped Titania Powders in Flame Aerosol Reactors[J]. Powder Technol., 2001, 114: 197–204

    Article  Google Scholar 

  21. K Nagaveni, M S Hegde, N Ravishankar, et al. Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity[J]. Langmuir, 2004, 20: 2 900–2 907

    Article  Google Scholar 

  22. E Sanchez, T Lopez. Effect of the Preparation Method on the Band Gap of Titania and Platinum-titania Sol-gel Materials[J]. Mater. Lett., 1995, 25, 271–275

    Article  Google Scholar 

  23. Q Luo, X W Li, Q Z Cai, et al. Preparation of Narrow Band Gap V2O5/TiO2 Composite Films by Micro-arc Oxidation[J]. Int. J. Miner. Metall. Mater., 2012, 19: 1 045–1 051

    Article  Google Scholar 

  24. X Yang, F Y Ma, K X Li, et al. Mixed Phase Titania Nanocomposite Co-doped with Metallic Silver and Vanadium Oxide: New Efficient Photocatalyst for Dye Degradation[J]. J. Hazard. Mater., 2010, 175: 429–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Xue  (薛丽红).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51002054, 51272079) and the Fundamental Research Funds for the Central Universities, HUST (No. 2011TS014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Xue, L., Yin, S. et al. Preparation of V-doped TiO2 photocatalysts by the solution combustion method and their visible light photocatalysis activities. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 863–868 (2014). https://doi.org/10.1007/s11595-014-1010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-1010-8

Key words

Navigation