Skip to main content
Log in

Synthesis of calcium silicate hydrate based on steel slag with various alkalinities

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

This study aimed to improve the hydraulic potential properties of the slag. Therefore, a method of dynamic hydrothermal synthesis was applied to synthesize calcium silicate hydrate. The phases and nanostructures were characterized by XRD, FTIR, TEM, and BET nitrogen adsorption. The influence of alkalinity of steel slag on its structures and properties was discussed. The experimental results show that, the main product is amorphous calcium silicate hydrate gel with flocculent or fibrous pattern with a BET specific surface area up to 77 m2/g and pore volume of 0.34 mL/g. Compared with low alkalinity steel slag, calcium silicate hydrate synthesized from higher alkalinity steel slag is prone to transform to tobermorite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng HD, Liu L. Fractal Characteristics of Granularity Distribution of Ground Steel Slag[J]. Cem. Eng., 2009, 6: 23–29

    Google Scholar 

  2. Wu SP, Xue YJ, Ye QS, et al. Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures[J]. Build. Environ., 2007, 42: 2 580–2 585

    Article  Google Scholar 

  3. Zhang L, Wang F, Chen X. Exploration on the Utilization and Development of Steel Slag[J]. iron & Steel Scrap of China, 2006, 1: 42–44

    Google Scholar 

  4. Li CH. Study on the Development and Prospect of Recycling Technology of Steel Slag in China [J]. WisCo Tech., 2010, 48,(4): 51–54

    Google Scholar 

  5. Wang Q, Yan PY, Feng JW. A Discussion on Improving Hydration Activity of Steel Slag by Altering Its Mineral Compositions [J]. J. Hazard. Mater., 2011, 186: 1 070–1 075

    Article  Google Scholar 

  6. Mason B. The Constitution of Basic Open-heath Slag [J]. J. Iron and Steel Inst., 1994, 11: 69

    Google Scholar 

  7. Ouyang D, Xie YP, He JY. Composition, Mineral Morphology and Cementitious Properties of Converter Slag [J]. J. Chin. Ceram. Soc., 1991, 19,(6): 488–494

    Google Scholar 

  8. Xu GL, Qian GR, Lai ZY, et al. Study of Low-alkalinity Steel Slag Blended Oil Well Cement and Geothermal Cement Chemical Composition, Mineral Phase and Mineral Characteristic of Lowalkalinity Steel Slag [J]. J. Southwest. Inst. Tech., 2000, 15,(1): 10–14

    Google Scholar 

  9. Bowker JC, Lupis CP, Flinn PA. Structure Studies of Slags by Mössbauer Spectroscopy [J]. Can. Metall. Q., 1981, 20,(1): 69–78

    Article  Google Scholar 

  10. Shen WG, Zhou MK, Ma W, et al. Investigation on the Application of Steel-slag-fly Ash Phosphogypsum Solidified Material as Road Base Material [J]. J. Hazard. Mater., 2009, 164: 99–104

    Article  Google Scholar 

  11. Wang Q, Yan PY. Hydration Properties of Basic Oxygen Furnace Steel Slag [J]. Constr. Build. Mater., 2010, 24: 1 134–1 140

    Article  Google Scholar 

  12. Kriskova L, Pontikes Y, Cizer O, et al. Effect of Mechanical Activation on the Hydraulic Properties of Stainless Steel Slag [J]. Cem. Concr. Res., 2012, 42: 778–788

    Article  Google Scholar 

  13. Wang Q. Research Progress in Activation of Steel Slag Activity [J]. Ready-mixed Concr., 2010, (5): 26–28

    Google Scholar 

  14. Ke CJ, Su DG. Study on Activation for Steel-slag with Lower Alkalinity in Hydrothermal Condition [J]. Multipurpose Util. Miner. Resour., 2004. 12,(6): 40–44

    Google Scholar 

  15. Qian GR, Sun DD, Tay HH, et al. Autoclave Properties of Kirschsteinite — based steel slag [J]. Cem. Concr. Res., 2002, 32: 1 377–1 382

    Article  Google Scholar 

  16. Wang SP, Peng XQ, Tang LP, et al. Influence of Inorganic Admixtures on the 11 Å-tobermorite Formation Prepared from Steel Slags: XRD and FTIR Analysis [J]. Constr. Build. Mater., 2014,(60): 42–47

    Google Scholar 

  17. Peng XQ, Gu SY, Huang T, et al. Reinforcement of Hydrated Calcium Silicate Powder to Silicon Rubber [J]. J. Civ., Archit. & Environ. Eng., 2010, 32,(5): 109–113

    Google Scholar 

  18. Zhang XX, Wei GS, Yu F. Thermal Radiative Properties of Xonolite Insulation Materials [J]. J. Therm. Sci., 2005, 14,(3): 281–284

    Article  Google Scholar 

  19. Jing ZZ, Jin FM, Yamasaki N, et al. Hydrothermal Synthesis of a Novel Tobermorite-based Porous Material from Municipal Incineration Bottom Ash [J]. Ind. Eng. Chem. Res., 2007, 46: 2 657–2 660

    Article  Google Scholar 

  20. Yang NR, Yue WH. Handbook of Microscopy of Inorganic Nonmetallic Materials [M]. Wuhan, Wuhan University of Technology. 2000: 65–90

    Google Scholar 

  21. Peng XQ, He LJ, Liu YM. Hydrated Calcium Silicate with Nm-order Size Manufactured by Using Dynamic Autoclaved Technology [J]. J. Chongqing Univ. (Nat. Sci. Ed.). 2005, 28,(5): 59–62

    Google Scholar 

  22. Ke CJ. Hydrothermal Performance and Its Mechanism of Low Alkalinity Steel Slag in Autoclaved Condition [J]. J. Build. Mater., 2007, 10,(2): 142–147

    Google Scholar 

  23. Mostafa NY, Kishar EA, Abo-El-Enein SA. FTIR Study and Cation Exchange Capacity of Fe3+ and Mg2+ -substituted Calcium Silicate Hydrates [J]. J. Alloy. Compd., 2009, 473: 538–542

    Article  Google Scholar 

  24. Yuan RZ, Tan DL. Study on Surface Characteristic of Hydrated Calcium Silicates [J]. J. Chin. Ceram. Soc., 1988, 16,(6): 489–493

    Google Scholar 

  25. Cang H, Wang ZY, Zhang GC, et al. Effect of Surface Morphology of Fine Quartz on the Hollow Secondary Particles of Xonotlite [J]. J. Inorganic Mater., 1999, 14,(3): 431–436

    Google Scholar 

  26. Siauciunas R, Baltakys. Formation of Gyrolite During Hydrothermal Synthesis in the Mix-tures of CaO and Amorphous SiO2 or Quartz [J]. Cem. Concr. Res., 2004, 34: 2 029–2 036

    Article  Google Scholar 

  27. Black L, Garbev K, Beuchle G, et al. X-ray Photoelectron Spectroscopic Investigation of Nanocrystalline Calcium Silicate Hydrates Synthsised by Reactive Milling [J]. Cem. Concr. Res., 2006, 6: 1 023–1 030

    Article  Google Scholar 

  28. Richardson IG. Tobermorite/jennite- and Tobermorite/Calcium Hydroxide-based Models for the Structure of C-S-H: Applicability to Hardened Pastes of Tricalcium Silicate, Dicalcium Silicate, Portland Cement, and Blends of Portlandcement with Blast-furnace Slag, Metakaolin, or Silica Fume [J]. Cem. Concr. Res., 2004, 34: 1 733–1 777

    Article  Google Scholar 

  29. Yang Q. Analysis on Microstructure and Primary Exploring of Contact Hardening Mechanism of C-S-H Superfine Powder Made with Hydrothermal Synthesis [D]. Chongqing: Chongqing University, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Peng  (彭小芹).

Additional information

Funded by the National Natural Science Foundation of China (No. 50972171), the Project of International Science and Technology Cooperation (No.2009DFR50450), and the Large Equipment Fund of Chongqing University (No.2012061511)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Peng, X., Geng, J. et al. Synthesis of calcium silicate hydrate based on steel slag with various alkalinities. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 789–794 (2014). https://doi.org/10.1007/s11595-014-0998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0998-0

Key words

Navigation