Skip to main content
Log in

Convergence analysis of the DFP algorithm for unconstrained optimization problems on Riemannian manifolds

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose the DFP algorithm with inexact line search for unconstrained optimization problems on Riemannian manifolds. Under some reasonable conditions, the global convergence result is established and the superlinear local convergence rate of the DFP algorithm is proved on Riemannian manifolds. The preliminary computational experiment is also reported to illustrate the effectiveness of the DFP algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidon, W.C.: Variable Metric Algorithms for Minimization, Argonne National Laboratory Report, (1959)

  2. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 317–322 (1963)

    Article  MathSciNet  Google Scholar 

  3. Powell, M.J.D.: How bad are the BFGS and DFP methods when the objective function is quadratic? Math. Program. 34, 34–47 (1986)

    Article  MathSciNet  Google Scholar 

  4. Powell, M.J.D.: On the Control of the DFP algorithm for unconstrained optimization when there are only two variables. Math. Program. 87, 281–301 (2000)

    Article  MathSciNet  Google Scholar 

  5. Pu, D.G.: Convergence of the DFP algorithm without exact line search. J. Optim. Theory Appl. 112, 187–211 (2002)

    Article  MathSciNet  Google Scholar 

  6. Pu, D.G., Tian, W.W.: The revised DFP algorithm without exact line search. J. Comput. Appl. Math. 154, 319–339 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Rao, J.Y., Huang, N.: A derivetive-free scaling memoryless DFP method for solving large scale nonlinear monotone equations. J. Glob. Optim. https://doi.org/10.1007/s10898-022-01215-2

  8. Huang, W., Gallivan, K.A., Absil, P.A.: A Broyden class of quasi-newton methods for Riemannian optimization. SIAM J. Optim. 25, 1660–1685 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemmanian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)

    Article  MathSciNet  Google Scholar 

  11. da Cruz Neto, J.X., Oliveira, P.R.: Geodesic Methods in Riemannian Manifolds. Universidade Federal do Rio de Janeiro, Research Report, PESC/COPPE, (1995)

  12. Huang, W.: Optimization Algorithms on Riemannian Manifolds with Applications, Ph.D. Thesis, Department of Mathematics, Florida State University, Tallahassee, FL, (2013)

  13. Zhang, H.C., Hager, W.W.: A Nonmonotone line search technique and its application to unconstrained optimization. SIAM. J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

  14. da Cruz Neto, J.. X., Lima, L.. L., Oliveira, P.. R.: Geodesic algorithm in Riemannian manifolds. Balk. J. Geom. Appl. 3, 89–100 (1998)

    Google Scholar 

  15. Huang, W., Absil, P.A., Gallivan, K.A.: A Riemannian symmetric rank-one trust-region method. Math. Program. 150, 179–216 (2015)

    Article  MathSciNet  Google Scholar 

  16. Huang, W., Absil, P.A., Gallivan, K.A.: A Riemannian BFGS method for nonconvex optimization problems. Lecture Notes in Computational Science and Engineering 112, 627–634 (2016)

  17. Povalej, Žiga: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mahdavi-Amiri, N., Sadaghiani, F.S.: A Superlinearly convergent nonmonotone quasi-Newton method for unconstrained multiobjective optimization. Optim. Method Softw. 35, 1223–1247 (2020)

    Article  MathSciNet  Google Scholar 

  19. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20, 602–626 (2009)

    Article  MathSciNet  Google Scholar 

  20. Wei, H.J., Yang, W.H., Chai, Y.S.: A Reimannian subspace BFGS trust region method. Optim. Lett. 17, 1889–1914 (2023)

    Article  MathSciNet  Google Scholar 

  21. Huang, W., Gallivan, K.A.: A limited-memory Riemannian symmetric rank-one trust-region method with a restart strategy. J. Sci. Comput. 93, 1–31 (2022)

    Article  MathSciNet  Google Scholar 

  22. Wang, Q.S., Yang, W.H.: Proximal quasi-newton method for composite optimization over the Stiefel manifold. J. Sci. Comput. 95, 1–34 (2023)

    Article  MathSciNet  Google Scholar 

  23. Luenberger, D.G.: The gradient projection method along geodesics. Manag. Sci. 18, 620–631 (1973)

    Article  MathSciNet  Google Scholar 

  24. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37, 177–219 (1982)

    Article  MathSciNet  Google Scholar 

  25. Smith, S.T.: Geometric Optimization Mmethods for Aadaptive Filiering, Ph.D. thesis, Division of Applied Sciences, Harvard University, Cambridge, MA, May, (1993)

  26. Qi, C.H., Gallivan, K.A., Absil, P.A.: Riemannian BFGS algorithm with applications. In: Recent Advances in Optimization and its Applications in Engineering. Springer, Cham (2010)

    Google Scholar 

  27. Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge University Press, London (1993)

    Google Scholar 

  28. Klingenberg, W.: A Course in Differential Geometry. Springer, Berlin (1978)

    Book  Google Scholar 

  29. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1996)

    Book  Google Scholar 

  30. Adel, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geodesic model for the human spine. IMA J. Numer. Anal. 3, 359–390 (2002)

    Google Scholar 

  31. Sato, H.: Riemannian Optimization and its Applications. Springer Briefs in Eletrical and Computer Engineering (2022)

  32. Li, X.B., Huang, N.J., Ansari, Q.H., Yao, J.C.: Convergence rate of descent method with new inexact line-search om Riemannian Manifolds. J. Optim. Theory Appl. 180, 830–854 (2019)

    Article  MathSciNet  Google Scholar 

  33. Byrd, R.H., Nocedal, J., Yuan, Y.X.: Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24, 1171–1190 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. Ortega, J.W., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (2003)

    Google Scholar 

  35. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, New Jersey (2008)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the editors and referees for their constructive comments. Xiaobo Li is supported by the Young Scientists Fund of the National Natural Science Foundation of China (No.11901485), Natural Science Foundation of Sichuan (No.2023NSFSC1354, No.2022NSFSC0532), the Fundamental Research Funds for the Central Universities (No. PHD2023-057). Kai Tu is supported by National Natural Science Foundation of China (No. 12101436) and the Humanities and Social Sciences Foundation of Ministry of Education of China (No. 23YJC630158). Jian Lu is supported by the National Natural Science Foundation of China under Grants 12271217, U21A20455, 61972265, 11871348; the Natural Science Foundation of Guangdong Province of China under Grant 2020B1515310008; in part by the Educational Commission of Guangdong Province of China under Grant 2019KZDZX1007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xb., Tu, K. & Lu, J. Convergence analysis of the DFP algorithm for unconstrained optimization problems on Riemannian manifolds. Optim Lett (2024). https://doi.org/10.1007/s11590-024-02103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-024-02103-2

Keywords

Navigation