Skip to main content
Log in

Resolvent of the parallel composition and the proximity operator of the infimal postcomposition

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper we provide the resolvent computation of the parallel composition of a maximally monotone operator by a linear operator under mild assumptions. Connections with a modification of the warped resolvent are provided. In the context of convex optimization, we obtain the proximity operator of the infimal postcomposition of a convex function by a linear operator and we relax full range conditions on the linear operator to mild qualification conditions. We also introduce a generalization of the proximity operator involving a general linear bounded operator leading to a generalization of Moreau’s decomposition for composite convex optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2017). https://doi.org/10.1287/moor.2016.0817

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48311-5

  3. Becker, S.R., Combettes, P.L.: An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery. J. Nonlin. Convex Anal. 15(1), 137–159 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Boţ, R.I., Grad, S.M., Wanka, G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17(4), 1239–1252 (2006). https://doi.org/10.1137/050641491

    Article  MathSciNet  MATH  Google Scholar 

  5. Bredies, K., Sun, H.: A proximal point analysis of the preconditioned alternating direction method of multipliers. J. Optim. Theory Appl. 173(3), 878–907 (2017). https://doi.org/10.1007/s10957-017-1112-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Briceño-Arias, L.M., Roldán, F.: Split-Douglas-Rachford algorithm for composite monotone inclusions and split-ADMM. SIAM J. Optim. 31(4), 2987–3013 (2021). https://doi.org/10.1137/21M1395144

    Article  MathSciNet  MATH  Google Scholar 

  7. Bùi, M.N., Combettes, P.L.: Warped proximal iterations for monotone inclusions. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2020.124315

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vision 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014). https://doi.org/10.1080/02331934.2012.733883

    Article  MathSciNet  MATH  Google Scholar 

  10. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005). https://doi.org/10.1137/050626090

    Article  MathSciNet  MATH  Google Scholar 

  11. Condat, L., Kitahara, D., Contreras, A., Hirabayashi, A.: Proximal splitting algorithms: A tour of recent advances, with new twists (2020). arXiv:1912.00137

  12. Côté, F.D., Psaromiligkos, I.N., Gross, W.J.: A theory of generalized proximity for ADMM. In: 2017 IEEE Global conference on signal and information processing (GlobalSIP), pp. 578–582 (2017). https://doi.org/10.1109/GlobalSIP.2017.8309025

  13. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004). https://doi.org/10.1002/cpa.20042

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas, J., Jr., Rachford, H.H., Jr.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956). https://doi.org/10.2307/1993056

    Article  MathSciNet  MATH  Google Scholar 

  15. Fadili, M.J., Starck, J.L.: Monotone operator splitting for optimization problems in sparse recovery. In: 2009 16th IEEE International conference on image processing (ICIP), pp. 1461–1464 (2009). https://doi.org/10.1109/ICIP.2009.5414555

  16. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Select. Topics Sig. Process. IEEE J. (2007). https://doi.org/10.1109/jstsp.2007.910281

    Article  Google Scholar 

  17. Fukushima, M.: The primal Douglas–Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. (1996). https://doi.org/10.1016/0025-5610(95)00012-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Gabay, D.: Chapter IX applications of the method of multipliers to variational inequalities. In: M. Fortin, R. Glowinski (eds.) Augmented Lagrangian methods: applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and Its Applications, vol. 15, pp. 299 – 331. Elsevier, New York (1983). https://doi.org/10.1016/S0168-2024(08)70034-1

  19. Giselsson, P.: Nonlinear forward-backward splitting with projection correction. SIAM J. Optim. 31(3), 2199–2226 (2021). https://doi.org/10.1137/20M1345062

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, X., Vandenberghe, L.: Bregman primal–dual first-order method and application to sparse semidefinite programming (2021). http://www.seas.ucla.edu/~vandenbe/publications/sdp-bregman.pdf

  21. Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–519 (1967). https://doi.org/10.1002/cpa.3160200302

    Article  MathSciNet  MATH  Google Scholar 

  22. Micchelli, C.A., Shen, L., Xu, Y.: Proximity algorithms for image models: denoising. Inverse Probl. (2011). https://doi.org/10.1088/0266-5611/27/4/045009

    Article  MathSciNet  MATH  Google Scholar 

  23. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris 255, 238–240 (1962). https://hal.archives-ouvertes.fr/hal-01867187/document

  24. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965). http://www.numdam.org/item/10.24033/bsmf.1625.pdf

  25. Moudafi, A.: Computing the resolvent of composite operators. Cubo 16(3), 87–96 (2014). https://doi.org/10.4067/s0719-06462014000300007

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, Q.V.: Forward-backward splitting with Bregman distances. Vietnam J. Math. 45(3), 519–539 (2017). https://doi.org/10.1007/s10013-016-0238-3

    Article  MathSciNet  MATH  Google Scholar 

  27. O’Connor, D., Vandenberghe, L.: On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting. Math. Program. (2020). https://doi.org/10.1007/s10107-018-1321-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Themelis, A., Patrinos, P.: Douglas-Rachford splitting and ADMM for nonconvex optimization: tight convergence results. SIAM J. Optim. 30(1), 149–181 (2020). https://doi.org/10.1137/18M1163993

    Article  MathSciNet  MATH  Google Scholar 

  29. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. (2005). https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  31. Tibshirani, R.J., Taylor, J.: The solution path of the generalized lasso. Ann. Statist. 39(3), 1335–1371 (2011). https://doi.org/10.1214/11-AOS878

    Article  MathSciNet  MATH  Google Scholar 

  32. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013). https://doi.org/10.1007/s10444-011-9254-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Y., Tang, Y., Zhu, C.: Iterative methods for computing the resolvent of composed operators in Hilbert spaces. Mathematics (2019). https://doi.org/10.3390/math7020131

    Article  Google Scholar 

Download references

Acknowledgements

The first author thanks the support of ANID under grants FONDECYT 1190871, Centro de Modelamiento Matemático (CMM) FB210005 BASAL funds for centers of excellence, and grant Redes 180032. The second author thanks the support of ANID-Subdirección de Capital Humano/Doctorado Nacional/2018-21181024 and of the Dirección de Postgrado y Programas from UTFSM through Programa de Incentivos a la Iniciación Científica (PIIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Briceño-Arias.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño-Arias, L.M., Roldán, F. Resolvent of the parallel composition and the proximity operator of the infimal postcomposition. Optim Lett 17, 399–412 (2023). https://doi.org/10.1007/s11590-022-01906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01906-5

Keywords

Navigation