Skip to main content
Log in

Instability of standing waves for a class of inhomogeneous Schrödinger equations with harmonic potential

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

This notes studies the inhomogeneous non-linear Schrödinger equations with a harmonic potential

$$\begin{aligned} i\partial _tu +\Delta u-|x|^2u+|x|^{b}|u|^{p-1}u=0. \end{aligned}$$

Indeed, following the methods of Fukuizumi and Ohta (Differ Integral Equ 16(6):691–706, 2003), Ohta (Funccialaj Ekvacioj 61:135–143, 2018), the non-linear and strong instability of standing waves are obtained in the two different regimes \(b>0\) and \(b<0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Ardila, A.H., Dinh, V.D.: Some qualitative studies of the focusing inhomogeneous Gross–Pitaevskii equation. arxiv:1903.04644v1

  3. Chen, J.: On the inhomogeneous non-linear Schrödinger equation with harmonic potential and unbounded coefficient. Czechoslov. Math. J. 60(3), 715–736 (2010)

    Article  MATH  Google Scholar 

  4. Chen, J., Guo, B.: Sharp constant of improved Gagliardo–Nirenberg inequality and its application. Ann. Mat. 190, 341–354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ebihara, Y., Schonbek, T.P.: On the non compactness of the radial Sobolev spaces. Hiroshima Math. J. 16, 665–669 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous non-linear Schrödinger equation. J. Evol. Equ. 16, 193–208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukuizumi, R.: Stability of standing waves for nonlinear Schrödinger equations with critical power non-linearity and potentials. Adv. Differ. Equ. 10(3), 259–276 (2020)

    MATH  Google Scholar 

  8. Fukuizumi, R., Ohta, M.: Instability of standing waves for non-linear Schrödinger equations with potentials. Differ. Integral Equ. 16(6), 691–706 (2003)

    MATH  Google Scholar 

  9. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100–3103 (1994)

    Article  Google Scholar 

  10. Ohta, M.: Strong instability of standing waves for non-linear Schrödinger equations with harmonic potential. Funccialaj Ekvacioj 61, 135–143 (2018)

    Article  MATH  Google Scholar 

  11. Saanouni, T.: Remarks on the semilinear Schrödinger equation. J. Math. Anal. Appl. 400, 331–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Saanouni, T.: Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. J. Math. Phys. 57, 081503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101(3/4), 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saanouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Lemma 2.11

Appendix: Proof of Lemma 2.11

Take \(\epsilon >0\).

  1. A.

    First case \(-2<b<0\).

    Take \((u_n)\) a bounded sequence of H. Without loss of generality, we assume that \((u_n)\) converges weakly to zero in H. Our purpose is to prove that \(\Vert u_n\Vert _{L^{p}(|x|^{b}\,dx)}\rightarrow 0.\) Using Hölder estimate, if \((q,q')\) satisfying \(q'|b|<N\), one gets

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{p}\,dx\le & {} \Vert u_n\Vert _{pq}^{p}\Vert |x|^{b}\Vert _{q'}\\\le & {} C\Vert u_n\Vert _{pq}^{p}\int _0^\epsilon \frac{dt}{t^{-q'b-N+1}}\\\le & {} C\Vert u_n\Vert _{pq}^{p}\epsilon ^{N+q'b}. \end{aligned}$$
    1. 1.

      First sub-case \(N\ge 3\).

      Now, since \(p<p^*\), we have \(N+\frac{2Nb}{2N-p(N-2)}>0\). Taking \(q:=\frac{2N}{p(N-2)}\) and using Sobolev injections, it follows that there exists \(\mu >0\) such that

      $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{p}\,dx\le & {} C\Vert u_n\Vert _{H^1}^{p}\epsilon ^{N+q'b}\\\le & {} C\epsilon ^{N+\frac{2Nb}{2N-p(N-2)}}\\\le & {} C\epsilon ^\mu . \end{aligned}$$
    2. 2.

      Second sub-case \(N=2\).

      Taking \(q>>1\) and using Sobolev injections, it follows that for \(b>-N\), there exists \(\mu >0\) such that

      $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{p}\,dx\le & {} C\Vert u_n\Vert _{H^1}^{p}\epsilon ^{N+q'b}\\\le & {} C\epsilon ^{N+q'b}\\\le & {} C\epsilon ^\mu . \end{aligned}$$

    On the other hand, by Sobolev injections,

    $$\begin{aligned} \int _{|x|\ge \epsilon }|x|^{b}|u_n|^{p}\,dx \le \epsilon ^{b}\Vert u_n\Vert _{p}^{p}. \end{aligned}$$

    Since \(\epsilon \) is arbitrary, one obtains \(\int _{\mathbb {R}^N}|x|^{b}|u_n|^{p}\,dx\rightarrow 0\) as \(n\rightarrow \infty .\) The proof is complete.

  2. B.

    Second case \(b\ge 0\).

    Take \((u_n)\) a bounded sequence of \(\Sigma .\) Without loss of generality, we assume that \((u_n)\) converges weakly to zero in \(\Sigma .\) Our purpose is to prove that \(\Vert u_n\Vert _{L^{p}(|x|^{b}\,dx)}\rightarrow 0.\) Write

    $$\begin{aligned} \int _{|x|\le \epsilon }|x|^{b}|u_n|^{p}\,dx\le C\Vert u_n\Vert _{p}^{p}\rightarrow 0. \end{aligned}$$

    Moreover, with Strauss inequality and Rellich Theorem,

    $$\begin{aligned} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|x|^{b}|u_n|^{p}\,dx\le C\Vert u_n\Vert _{L^\infty (\epsilon \le |x|\le \frac{1}{\epsilon })}^{p-2} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^2\,dx\rightarrow 0. \end{aligned}$$

    Now, with Strauss inequality

    $$\begin{aligned} \int _{|x|\ge \frac{1}{\epsilon }}|x|^{b}|u_n|^{p}\,dx= & {} \int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-2-(p-2)\frac{N-1}{2}}(|x|^{\frac{N-1}{2}}|u_n|)^{p-2}|x|^2|u_n|^2\,dx\\\le & {} C\int _{|x|\ge \frac{1}{\epsilon }}|x|^{b-2-(p-2)\frac{N-1}{2}}|x|^2|u_n|^2\,dx\\\le & {} C\epsilon ^{(p-2)\frac{N-1}{2}-b+2}. \end{aligned}$$

    The proof is achieved because \({b-2-(p-2)\frac{N-1}{2}}<0.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T. Instability of standing waves for a class of inhomogeneous Schrödinger equations with harmonic potential. Ricerche mat 71, 561–580 (2022). https://doi.org/10.1007/s11587-020-00528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00528-2

Keywords

Mathematics Subject Classification

Navigation