Skip to main content
Log in

One-dimensional cylindrical shock waves in non-ideal gas under magnetic field

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In the present paper, we analyze the evolutionary behavior of imploding strong shock waves propagating through a non-ideal gas in the presence of axial magnetic field. An evolution equation has been constructed by using the method based on the kinematics of one-dimensional motion of shock waves. The values of similarity exponents have been calculated by using the first order truncation approximation which describes the decay behavior of strong shocks. The approximate values of the similarity exponents are compared with the similarity exponents calculated by the CCW approximation, the exact similarity solution and perturbation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  2. Lee, B.H.K.: The initial phases of collapse of an imploding shock wave and the application to hypersonic internal flow. C.A.S.I. Trans. 1, 57–67 (1968)

    Google Scholar 

  3. Van Dyke, M., Guttmann, A.J.: The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451–462 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chisnell, R.F.: An analytic description of converging shock waves. J. Fluid Mech. 354, 357–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jeffrey, A.: The formation of magnetoacoustic shocks. J. Math. Anal. Appl. 11, 139–150 (1965)

    Article  MathSciNet  Google Scholar 

  6. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  7. Sari, R., Bode, N., Yalinewich, A., MacFadyen, A.: Slightly two- or three-dimensional self-similar solutions. Phys. Fluids 24, 087102 (2012)

    Article  Google Scholar 

  8. Butler, D.S.: Converging Spherical and Cylindrical Shocks. Ministry of Supply, Armament Research Establishment, Fort Halstead (1954)

    Google Scholar 

  9. Boyd, Z.M., Ramsey, S.D., Baty, R.S.: On the existence of self-similar converging shocks for arbitrary equation of state. Q. J. Mech. and Appl. Math. 70(4), 401–417 (2017)

    Article  MATH  Google Scholar 

  10. Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016)

    Article  Google Scholar 

  11. Madhumita, G., Sharma, V.D.: Propagation of strong converging shock waves in a gas of variable density. J. Eng. Math. 46, 55–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arora, R., Sharma, V.D.: Convergence of strong shock in a Van der Waals gas. SIAM J. Appl. Math. 66(5), 1825–1837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chauhan, A., Arora, R., Tomar, A.: Convergence of strong shock waves in a non-ideal magnetogasdynamics. Phys. Fluids 30(11), 116105 (2018)

    Article  Google Scholar 

  14. Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock induced phase transitions in a Van der Waals fluid. Phys. Fluids 23(8), 86–101 (2011)

    Article  MATH  Google Scholar 

  15. Ponchaut, N.F., Hornung, H.G., Pullin, D.I., Mouton, C.A.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donato, A., Ruggeri, T.: Similarity solutions and strong shocks in extended thermodynamics of rarefied gas. J. Math. Anal. Appl. 251, 395–405 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lock, R.M., Mestel, A.J.: Annular self-similar solutions in ideal magnetogasdynamics. J. Plasma Phys. 74(4), 531–554 (2008)

    Article  MATH  Google Scholar 

  18. Bira, B., Raja Sekhar, T., RajaSekhar, G.P.: Collision of characteristic shock with weak discontinuity in non-ideal magnetogasdynamics. Comput. Math. Appl. 75, 3873–3883 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, P.J.: Selected Topics in Wave Propagation. Noordhoff, Leyden (1976)

    MATH  Google Scholar 

  20. Sharma, V.D., Radha, Ch.: Similarity solution for converging shock in a relaxing gas. Int. J. Eng. Sci. 33, 535–553 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maslov, V.P.: Propagation of shock waves in an isentropic nonviscous gas. J. Sov. Math. 13, 119–163 (1980)

    Article  MATH  Google Scholar 

  22. Arora, R., Sharma, V.D.: Converging and diverging shock waves of arbitrary strength in a Van der waals gas. Can. Appl. Math. Q. 14(4), 1–24 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Sharma, V.D., Radha, Ch.: On one-dimensional planar and nonplanar shock waves in a relaxing gas. Phys. Fluids 6, 2177–2190 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Madhumita, G., Sharma, V.D.: Imploding cylindrical and spherical shocks in a non-ideal medium. J. Hyperbolic Differ. Equ. 1(3), 521–530 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh, L.P., Husain, A., Singh, M.: A self-similar solution of exponential shock waves in non-ideal magnetogasdynamics. Meccanica 46, 437–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, C.C., Roberts, P.H.: Structure and stability of a spherical shock wave in a Van der Waals gas. Q. J. Mech. Appl. Math. 49, 501–543 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flugge, S. (ed.) Handbuch der Physik, vol. III. Springer, OHG, Berlin (1960)

    Google Scholar 

Download references

Acknowledgements

Mayank Singh acknowledges the research support from “University Grant Commission (Govt of India)” (Sr. No. 2121540982 with Ref No. 20/12/2015(ii)EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Arora, R. & Chauhan, A. One-dimensional cylindrical shock waves in non-ideal gas under magnetic field. Ricerche mat 71, 367–379 (2022). https://doi.org/10.1007/s11587-020-00524-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00524-6

Keywords

Mathematics Subject Classification

Navigation