Skip to main content
Log in

On the operations of sequences in rings and binomial type sequences

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Given a commutative ring with identity R, many different and interesting operations can be defined over the set \(H_R\) of sequences of elements in R. These operations can also give \(H_R\) the structure of a ring. We study some of these operations, focusing on the binomial convolution product and the operation induced by the composition of exponential generating functions. We provide new relations between these operations and their invertible elements. We also study automorphisms of the Hurwitz series ring, highlighting that some well-known transforms of sequences (such as the Stirling transform) are special cases of these automorphisms. Moreover, we introduce a novel isomorphism between \(H_R\) equipped with the componentwise sum and the set of the sequences starting with 1 equipped with the binomial convolution product. Finally, thanks to this isomorphism, we find a new method for characterizing and generating all the binomial type sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche, J.P., France, M.M.: Hadamard grade of power series. J. Number Theory 131(11), 2013–2022 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barbero, S., Cerruti, U., Murru, N.: Some combinatorial properties of the Hurwitz series ring, Ricerche di Matematica (to appear). https://doi.org/10.1007/s11587-017-0336-x (2017)

  3. Benhissi, A.: Ideal structure of Hurwitz series rings. Contrib. Algebra Geom. 48(1), 251–256 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Benhissi, A., Koja, F.: Basic properties of Hurwitz series rings. Ricerche Mat. 61(2), 255–273 (2012)

    Article  MathSciNet  Google Scholar 

  5. Charalambides, C.A.: Enumerative Combinatorics. Chapman and Hall, Boca Raton (2002)

    MATH  Google Scholar 

  6. Di Bucchianico, A., Loeb, D.: Sequences of binomial type with persistant roots. J. Math. Anal. Appl. 199(1), 39–58 (1996)

    Article  MathSciNet  Google Scholar 

  7. Di Bucchianico, A.: Probabilistic and Analytic Aspects of the Umbral Calculus. Centrum Wiskunde and Informatica (CWI), Amsterdam (1997)

    MATH  Google Scholar 

  8. Fill, J.A., Flajolet, P., Kapur, N.: Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174, 271–313 (2005)

    Article  MathSciNet  Google Scholar 

  9. Ghanem, M.: Some properties of Hurwitz series ring. Int. Math. Forum 6(40), 1973–1981 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Goss, D.: Polynomials of binomial type and Lucas’ theorem. Proc. Am. Math. Soc. 144, 1897–1904 (2016)

    Article  MathSciNet  Google Scholar 

  11. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  12. Hadamard, J.: Theorem sur les series entieres. Acta Math. 22, 55–63 (1899)

    Article  MathSciNet  Google Scholar 

  13. Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146, 291–304 (2000)

    Article  MathSciNet  Google Scholar 

  14. Kisil, V.V.: Polynomial sequences of binomial type path integrals. Ann. Comb. 6(1), 45–56 (2002)

    Article  MathSciNet  Google Scholar 

  15. Mihoubi, M.: Bell polynomials and binomial type sequences. Discrete Math. 308, 2450–2459 (2008)

    Article  MathSciNet  Google Scholar 

  16. Rota, G.C., Kahaner, D., Odlyzko, A.: Finite operator calculus. J. Math. Anal. Appl. 42, 685–760 (1973)

    Article  Google Scholar 

  17. Schneider, J.: Polynomial sequences of binomial-type arising in graph theory. Electron. J. Comb. 21(1), 1.43 (2014)

    MathSciNet  Google Scholar 

  18. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Murru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbero, S., Cerruti, U. & Murru, N. On the operations of sequences in rings and binomial type sequences. Ricerche mat 67, 911–927 (2018). https://doi.org/10.1007/s11587-018-0389-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0389-5

Keywords

Mathematics Subject Classification

Navigation