Skip to main content
Log in

Integrability properties for relativistic extended thermodynamics of polyatomic gas

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In a recent article (Ann Phys 377:414–445, 2017. https://doi.org/10.1016/j.aop.2016.12.012), Pennisi and Ruggeri proposed a relativistic extended thermodynamics theory of polyatomic gas. It was achieved by adopting the closure procedure for the generalized moments of a distribution function that, as in the classical case, depends on an additional continuous variable representing the energy of the internal modes of a molecule; this permits the theory to take into account the energy exchange between the translational and the internal modes of a molecule in binary collisions. In this paper the attention will be focused on some integrals appearing in the field equations of the relativistic theory of polyatomic gas and their integrability will be proven. In the last part of the paper we consider the case of a monatomic gas and we evaluate the ultra-relativistic limit of the differential system of balance laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271–292 (2011). https://doi.org/10.1007/s00161-011-0213-x

    Article  MATH  Google Scholar 

  2. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13341-6

    Book  MATH  Google Scholar 

  3. Carrisi, M.C., Montisci, S., Pennisi, S.: Entropy principle and Galilean relativity for dense gases, the general solution without approximations. Entropy 15, 1035–1056 (2013). https://doi.org/10.3390/e15031035

    Article  MathSciNet  MATH  Google Scholar 

  4. Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013). https://doi.org/10.1016/j.physleta.2013.06.035

    Article  MathSciNet  MATH  Google Scholar 

  5. Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Phys. A 392, 1302–1317 (2013). https://doi.org/10.1016/j.physa.2012.12.006

    Article  MathSciNet  Google Scholar 

  6. Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas. Phys. Lett. A 378(36), 2695–2700 (2014). https://doi.org/10.1016/j.physleta.2014.07.031

    Article  MATH  Google Scholar 

  7. Carrisi, M.C., Pennisi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases in the presence of dynamic pressure. Ricerche mat. 64, 403–419 (2015). https://doi.org/10.1007/s11587-015-0247-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345(111–140), 2014 (2014). https://doi.org/10.1016/j.aop.2014.03.011

    MathSciNet  MATH  Google Scholar 

  9. Carrisi, M.C., Pennisi, S.: Extended thermodynamics for dense gases up to whatever order. Int. J. Non-Linear Mech. 77, 74–84 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.07.011

    Article  Google Scholar 

  10. Carrisi, M.C., Tchame, R.E., Obounou, M., Pennisi, S.: Extended thermodynamics for dense gases up to whatever order and with only some symmetries. Entropy 17, 7052–7075 (2015). https://doi.org/10.3390/e17107052

    Article  MathSciNet  Google Scholar 

  11. Carrisi, M.C., Pennisi, S., Sellier, J.M.: Extended thermodynamics of dense gases with many moments–the macroscopic approach. Int. J. Non-Linear Mech. 84, 12–22 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.04.003

    Article  MATH  Google Scholar 

  12. Carrisi, M.C., Pennisi, S., Sellier, J.M.: A kinetic type exact solution for extended thermodynamics of dense gases with many moments. J. Comput. Theor. Transp. 45(3), 162–173 (2016). https://doi.org/10.1080/23324309.2016.1149079

    Article  MathSciNet  Google Scholar 

  13. Carrisi, M.C., Pennisi, S., Sellier, J.M.: Extended thermodynamics of dense gases with at least 24 moments. Ricerche mat. 65, 505–522 (2016). https://doi.org/10.1007/s11587-016-0271-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrisi, M.C., Tchame, R.E., Obounou, M., Pennisi, S.: An exact solution for the macroscopic approach to extended thermodynamics of dense gases with many moments. Int. Pure Appl. Math. 106(1), 171–189 (2016). https://doi.org/10.12732/ijpam.v106i1.13

    MATH  Google Scholar 

  15. Carrisi, M.C., Tchame, R.E., Obounou, M., Pennisi, S.: A numberable set of exact solutions for the macroscopic approach to extended thermodynamics of polyatomic gases with many moments. Adv. Math. Phys. (2016). https://doi.org/10.1155/2016/1307813

    MathSciNet  MATH  Google Scholar 

  16. Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments. Ann. Phys. 372, 83–109 (2016). https://doi.org/10.1016/j.aop.2016.04.015

    Article  MathSciNet  MATH  Google Scholar 

  17. Carrisi, M.C., Tchame, R.E., Obounou, M., Pennisi, S.: The general exact solution for the many moments macroscopic approach to extended thermodynamics of polyatomic gases. Int. Pure Appl. Mech. 112(4), 827–849 (2017). https://doi.org/10.12732/ijpam.v112i4.13

    MATH  Google Scholar 

  18. Bisi, M., Ruggeri, T., Spiga, G.: Dynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamics. Kinet. Relat. Models. (2017). https://doi.org/10.3934/krm.2018004

    MATH  Google Scholar 

  19. Pennisi, S., Ruggeri, T.: Relativistic extended thermodynamics of rarefied polyatomic gas. Ann. Phys. 377, 414–445 (2017). https://doi.org/10.1016/j.aop.2016.12.012

    Article  MathSciNet  MATH  Google Scholar 

  20. Dreyer, W., Weiss, W.: The classical limit of relativistic extended thermodynamics. Annales de L’ Institut henri Poincaré 45, 401–418 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Liu, I.S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. (N.Y.) 169, 191–219 (1986). https://doi.org/10.1016/0003-4916(86)90164-8

    Article  MathSciNet  Google Scholar 

  22. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, 2nd edn. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-2210-1

    Book  Google Scholar 

  23. Carrisi, M.C., Pennisi, S.: The model with many moments for relativistic electron beams: a simplified solution. J. Math. Phys. 52, 023103-1–023103-12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Carrisi, M.C., Pennisi, S.: Extended thermodynamics of charged gases with many moments: an alternative closure. J. Math. Phys. 54, 093101-1–093101-15 (2013). https://doi.org/10.1063/1.4821086

    MathSciNet  MATH  Google Scholar 

  25. Barbera, E., Brini, F.: Non-isothermal axial flow of a rarefied gas between two coaxial cylinders. AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali 95(2), A1–A112 (2017). https://doi.org/10.1478/AAPP.952A1

    MathSciNet  Google Scholar 

  26. Barbera, E., Brini, F.: Stationary heat transfer in helicoidal flows of a rarefied gas. EPL (Europhysics Letters) 120(3) (2017). https://doi.org/10.1209/0295-5075/120/34001

Download references

Acknowledgements

This paper was supported by National Group of Mathematical Physics GNFM-INdAM. The results contained in the present paper have been partially presented in WASCOM 2017 conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pennisi.

Appendix: Proof of Eqs. (6) and (8)

Appendix: Proof of Eqs. (6) and (8)

We start from the Newton’s binomial rule

$$\begin{aligned} (a+b)^n&= \sum _{h=0}^n \begin{pmatrix} n \\ h \end{pmatrix} a^h b^{n-h}= \sum _{h=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} a^h b^{n-h} + \sum _{h=\left[ \frac{n}{2} \right] +1}^{n} \begin{pmatrix} n \\ h \end{pmatrix} a^h b^{n-h} {\mathop {=}\limits ^{*}} \\&= \sum _{h=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} a^h b^{n-h} + \sum _{k=0}^{n-\left[ \frac{n}{2} \right] -1} \begin{pmatrix} n \\ n-k \end{pmatrix} a^{n-k} b^k = \sum _{h=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} a^h b^{n-h} \\&\quad + \sum _{h=0}^{\left[ \frac{n-1}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} a^{n-h} b^h = \sum _{h=0}^{\left[ \frac{n-1}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} \left( a^h b^{n-h} + a^{n-h} b^h \right) + \begin{pmatrix} n \\ n/2 \end{pmatrix} a^{\frac{n}{2}} b^{\frac{n}{2}}, \end{aligned}$$

where the last term is present only if n is an even number, and in the passage denoted with \({\mathop {=}\limits ^{*}}\) we have changed the index of the second summation according to the rule \(n-h=k\).

By using this result with \(a=\frac{1}{2} e^s\) and \(b=\frac{1}{2} e^{-s}\), we find

$$\begin{aligned} \cosh ^n s&= \sum _{h=0}^{\left[ \frac{n-1}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} \frac{1}{2^{n}} \left( e^{(2h-n)s} + e^{-(2h-n)s} \right) + \begin{pmatrix} n \\ n/2 \end{pmatrix} \frac{1}{2^{n}} \\&= \frac{1}{2^{n-1}} \sum _{h=0}^{\left[ \frac{n-1}{2} \right] } \begin{pmatrix} n \\ h \end{pmatrix} \cosh [(2h-n)s] + \begin{pmatrix} n \\ n/2 \end{pmatrix} \frac{1}{2^{n}} \cosh 0. \end{aligned}$$

By multiplying this relation by \(e^{-\gamma \cosh s}\) and integrating in ds for \(s \in [0, \, + \infty [\), we find Eq. (6); we have only to take into account that, when n is an even number,

$$\begin{aligned} \begin{pmatrix} n \\ n/2 \end{pmatrix} \frac{1}{2^{n}}&= \frac{n!}{[(n/2)!]^2} \frac{1}{2^{n}} = \frac{(n-1)!! \, n!!}{[(n/2)!]^2} \frac{1}{2^{n}} = \frac{(n-1)!! \, 2^{n/2} (n/2)!}{[(n/2)!]^2} \frac{1}{2^{n}}\\&= \frac{(n-1)!!}{(n/2)!} \frac{1}{2^{n/2}} = \frac{(n-1)!!}{n!!}. \end{aligned}$$

Let us prove now Eq. (8).

From \(\cosh s + \sinh s = e^s\), \(\cosh s - \sinh s = e^{-s}\), it follows

$$\begin{aligned}{} & {} e^{ns} = \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix} \sinh ^h s \cosh ^{n-h} s, \quad e^{-ns} = \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix} (-1)^h \sinh ^h s \cosh ^{n-h} s \, \\{} & {} \text{ from } \text{ which } \text{ it } \text{ follows } \quad \cosh (ns) = \frac{1}{2} \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix} \left[ 1 + (-1)^h \right] \sinh ^h s \cosh ^{n-h} s. \end{aligned}$$

Here, only the terms with h even i.e. \(h=2r\) survive and the above relation becomes

$$\begin{aligned}{} & {} \cosh (ns) = \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} \sinh ^{2r} s \cosh ^{n-2r} s = \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} \sum _{p=0}^{r} \begin{pmatrix} r \\ p \end{pmatrix} (-1)^p \cosh ^{n-2p} s. \end{aligned}$$

By multiplying this relation by \(e^{-\gamma \cosh s}\) and integrating in ds for \(s \in [0, \, + \infty [\), we find

$$\begin{aligned}{} & {} K_n (\gamma ) = \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} J_{2r, n-2r} (\gamma )= \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} \sum _{p=0}^{r} \begin{pmatrix} r \\ p \end{pmatrix} (-1)^p J_{0, n-2p} (\gamma ). \end{aligned}$$

But \(\sum _{r=0}^{\left[ \frac{n}{2} \right] } \sum _{p=0}^{r}\) means that the summation is extended to all the indexes (rp) with \(0 \le r \le \left[ \frac{n}{2} \right] \), \(0 \le p \le \left[ \frac{n}{2} \right] \), \(0 \le r-p\); so we can exchange the order of the two summations and obtain Eq. (8).

It is interesting to note that here the term with \(J_{0, n} (\gamma )\) appears only for \(p=0\) and its coefficient is

$$\begin{aligned}{} & {} \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} = \left\{ \begin{matrix} 2^{n-1} &{}\quad \text{ if } \quad n \ge 1, \\ 1 &{}\quad \text{ if } \quad n =0. \end{matrix} \right. \end{aligned}$$

In fact, for \(n \ge 1\) we have

$$\begin{aligned} (1+1)^n = \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix}, \quad (1-1)^n = \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix} (-1)^h \quad \text{ whose } \text{ sum } \text{ is } \quad 2^n = \sum _{h=0}^{n} \begin{pmatrix} n \\ h \end{pmatrix} \left[ 1 +(-1)^h \right] ; \end{aligned}$$

here, only the terms with h even i.e. \(h=2r\) survive and the above relation becomes

$$\begin{aligned}&2^n = \sum _{r=0}^{\left[ \frac{n}{2} \right] } \begin{pmatrix} n \\ 2r \end{pmatrix} 2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrisi, M.C., Pennisi, S. & Ruggeri, T. Integrability properties for relativistic extended thermodynamics of polyatomic gas. Ricerche mat 68, 57–73 (2019). https://doi.org/10.1007/s11587-018-0385-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0385-9

Keywords

Mathematics Subject Classification

Navigation