Skip to main content
Log in

Orthomodular lattices that are \(Z_2\)-rich

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We study the orthomodular lattices (OMLs) that have an abundance of \(Z_2\)-valued states. We call these OMLs \(Z_2\)-rich. The motivation for the investigation comes from a natural algebraic curiosity that reflects the state of the (orthomodular) art, the consideration also has a certain bearing on the foundation of quantum theories (OMLs are often identified with “quantum logics”) and mathematical logic (\(Z_2\)-states are fundamental in mathematical logic). Before we launch on the subject proper, we observe, for a potential application elsewhere, that there can be a more economic introduction of \(Z_2\)-richness - the \(Z_2\)-richness in the orthocomplemented setup is sufficient to imply orthomodularity. In the further part we review basic examples of OMLs that are \(Z_2\)-rich and that are not. Then we show, as a main result, that the \(Z_2\)-rich OMLs form a large and algebraicly “friendly” class—they form a variety. In the appendix we note that the OMLs that allow for a natural introduction of a symmetric difference provide a source of another type of examples of \(Z_2\)-rich OMLs. We also formulate open questions related to the matter studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bunce, L., Navara, M., Pták, P., Wright, J.: Quantum logics with Jauch–Piron states. Q. J. Math. (Oxford) 36, 261–271 (1985)

    Article  MathSciNet  Google Scholar 

  2. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York (1981)

    Book  Google Scholar 

  3. de Lucia, P., Pták, P.: Quantum logics with classically determined states. Colloquium Mathematicae 80(1), 147–154 (1999)

    Article  MathSciNet  Google Scholar 

  4. De Simone, A., Navara, M., Pták, P.: States on systems of sets that are closed under symmetric difference. Mathematische Nachrichten 288(17–18), 1995–2000 (2015)

    Article  MathSciNet  Google Scholar 

  5. De Simone, A., Pták, P.: Measures on circle coarse-grained systems of sets. Positivity 14, 247–256 (2010)

    Article  MathSciNet  Google Scholar 

  6. Dvurečenskij, A.: Gleason’s Theorem and Its Applications. Kluwer Academic Publishers, Dordrecht-Boston-London (1992)

    MATH  Google Scholar 

  7. Einstein, A., Podolski, B., Rosen, N.: Can quantum mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  Google Scholar 

  8. Greechie, R.J.: Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971)

    Article  MathSciNet  Google Scholar 

  9. Gudder, S.P.: Stochastic Methods in Quantum Mechanics. Elsevier, North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  10. Hamhalter, J.: Quantum Measure Theory. Kluwer Academic Publishers, Dordrecht, Boston, London (2003)

    Book  Google Scholar 

  11. Engesser, K., Gabbay, D.M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  12. Harding, J., Jager, E., Smith, D.: Group-valued measures on the lattice of closed subspaces of a hilbert space. Int. J. Theor. Phys. 44, 539–548 (2005)

    Article  MathSciNet  Google Scholar 

  13. Hroch, M., Pták, P.: States on orthocomplemented difference posets (extensions). Lett. Math. Phys. 106(8), 1131–1137 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  15. Matoušek, M.: Orthocomplemented lattices with a symmetric difference. Algebra Universalis 60, 185–215 (2009)

    Article  MathSciNet  Google Scholar 

  16. Matoušek, M., Pták, P.: Symmetric difference on orthomodular lattices and \(Z_2\)-valued states. Comment. Math. Univ. Carolin. 50(4), 535–547 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Matoušek, M., Pták, P.: On identities in orthocomplemented difference lattices. Mathematica Slovaca 60(5), 583–590 (2010)

    Article  MathSciNet  Google Scholar 

  18. Mayet, R.: Varieties of orthomodular lattices related to states. Algebra Universalis 20, 368–386 (1985)

    Article  MathSciNet  Google Scholar 

  19. Navara, M.: An orthomodular lattice admitting no group-valued measure. Proc. Am. Math. Soc. 122, 7–12 (1994)

    Article  MathSciNet  Google Scholar 

  20. Navara, M., Pták, P.: For \(n \ge 5\) there is no nontrivial \(Z_2\)-measure on \(L(R^n)\). Int. J. Theor. Phys. 43, 1595–1598 (2004)

    Article  Google Scholar 

  21. Navara, M., Pták, P., Rogalewicz, V.: Enlargements of quantum logics. Pac. J. Math. 135, 361–369 (1988)

    Article  MathSciNet  Google Scholar 

  22. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht, Boston, London (1991)

    MATH  Google Scholar 

  23. Pták, P., Weber, H.: Relatively additive states on quantum logics. Comment. Math. Univ. Carolin. 46(2), 327–338 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Pták, P., Weber, H.: Lattice properties of subspace families in an inner product space. Proc. Am. Math. Soc. 129(7), 2111–2117 (2001)

    Article  MathSciNet  Google Scholar 

  25. Weber, H.: There are orthomodular lattices without non-trivial group-valued states: a computer-based construction. J. Math. Anal. Appl. 183, 89–94 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Pták.

Additional information

Communicated by P. de Lucia.

To Hans Weber with best wishes, and with compliments for his mathematical achievement.

Appendix: The orthomodular lattices with a symmetric difference are \(Z_2\)-rich

Appendix: The orthomodular lattices with a symmetric difference are \(Z_2\)-rich

In this paragraph we briefly (without proofs) indicate the link of \(Z_2\)-rich OMLs with the OMLs that allow for a natural introduction of symmetric difference. The latter class has come into existence independently of \(Z_2\)-RICH and been investigated in [4, 13, 15,16,17]. The definition reads as follows.

Definition 4

Let \(L = (X,\wedge ,\vee ,^\perp ,0,1,\mathbin {\triangle })\), where \((X,\wedge ,\vee ,^\perp ,0,1)\) is an orthomodular lattice and \(\mathbin {\triangle }: X^2 \rightarrow X\) is a binary operation. Then L is said to be an orthocomplemented difference lattice (abbr., an ODL) if the following formulas hold in L:

\((\mathrm{D}_1)\) :

\(x \mathbin {\triangle }(y\mathbin {\triangle }z) = (x \mathbin {\triangle }y)\mathbin {\triangle }z\),

\((\mathrm{D}_2)\) :

\(x \mathbin {\triangle }1 = x^\perp \), \(1 \mathbin {\triangle }x = x^\perp \),

\((\mathrm{D}_3)\) :

\(x \mathbin {\triangle }y \le x \vee y\).

Theorem 2

Each ODL is \(Z_2\)-rich.

The proof of 2 uses a specific ODL reasoning and can be found in [16]. Let us note that the study of ODLs brought about brand new types of \(Z_2\)-rich OMLs. The reader might find them interesting. Also, the investigation advanced to formulating related open question. Let us end up this paper by formulating one of them: Is the variety \(Z_2\)-RICH generated by the class of all ODLs?

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoušek, M., Pták, P. Orthomodular lattices that are \(Z_2\)-rich. Ricerche mat 67, 321–329 (2018). https://doi.org/10.1007/s11587-018-0378-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0378-8

Keywords

Mathematics Subject Classification

Navigation