Skip to main content
Log in

Uniqueness theorems about high-order time differential thermoelastic models

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The purpose of the present manuscript is to investigate the well-posedness question for three different stand-alone and self-consistent thermoelastic models derived from the time differential formulation of the dual-phase-lag heat conduction law and characterized by Taylor expansion orders higher than those most commonly considered in literature up to now. The main motivation at the basis of this study is that the interaction among multiple energy carriers progressively gains significance as the observation scales reduce and has, as a direct consequence, the involvement of high-order terms in the time differential dual-phase-lag heat conduction constitutive equation. Considering inhomogeneous and anisotropic linear thermoelastic materials, we are able to prove three uniqueness results through the use of appropriate integral operators and Lagrange identities; the results are proved without any restriction imposed on the delay times other than their positivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  2. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995). https://doi.org/10.1016/0017-9310(95)00052-B

    Article  Google Scholar 

  3. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995). https://doi.org/10.2514/3.725

    Article  Google Scholar 

  4. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Wiley, London (2015). https://doi.org/10.1002/9781118818275. Print ISBN: 9781118818220

    Book  Google Scholar 

  5. Quintanilla, R.: Exponential stability in the dual-phase-lag heat conduction theory. J. Nonequil. Thermody. 27(3), 217–227 (2002). https://doi.org/10.1515/jnetdy.2002.012

    Article  MATH  Google Scholar 

  6. Horgan, C.O., Quintanilla, R.: Spatial behaviour of solutions of the dual-phase-lag heat equation. Math. Methods Appl. Sci. 28(1), 43–57 (2005). https://doi.org/10.1002/mma.548

    Article  MathSciNet  MATH  Google Scholar 

  7. Quintanilla, R., Racke, R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49(7–8), 1209–1213 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016

    Article  MATH  Google Scholar 

  8. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J. Appl. Math. 66(3), 977–1001 (2006). https://doi.org/10.1137/05062860X

    Article  MathSciNet  MATH  Google Scholar 

  9. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. A Math. Phys. 463(2079), 659–674 (2007). https://doi.org/10.1098/rspa.2006.1784

    Article  MathSciNet  MATH  Google Scholar 

  10. Jordan, P.M., Dai, W., Mickens, R.E.: A note on the delayed heat equation: instability with respect to initial data. Mech. Res. Commun. 35(6), 414–420 (2008). https://doi.org/10.1016/j.mechrescom.2008.04.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Quintanilla, R.: A well-posed problem for the dual-phase-lag heat conduction. J. Therm. Stresses 31(3), 260–269 (2008). https://doi.org/10.1080/01495730701738272

    Article  Google Scholar 

  12. Fabrizio, M., Franchi, F.: Delayed thermal models: stability and thermodynamics. J. Therm. Stresses 37(2), 160–173 (2014). https://doi.org/10.1080/01495739.2013.839619

    Article  Google Scholar 

  13. Fabrizio, M., Lazzari, B.: Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.027

    Article  Google Scholar 

  14. Chiriţă, S., Ciarletta, M., Tibullo, V.: On the wave propagation in the time differential dual-phase-lag thermoelastic model. Proc. R. Soc. A Math. Phys. 471(2183) (2015). Art. no. 20150400. https://doi.org/10.1098/rspa.2015.0400

    Article  MathSciNet  Google Scholar 

  15. Quintanilla, R., Racke, R.: Spatial behavior in phase-lag heat conduction. Differ. Integral Equ. 28(3–4), 291–308 (2015). http://projecteuclid.org/euclid.die/1423055229

  16. Fabrizio, M., Lazzari, B., Tibullo, V.: Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Nonequil. Thermody. 42(3), 243–252 (2017). https://doi.org/10.1515/jnet-2016-0039

    Article  Google Scholar 

  17. Chiriţă, S.: On the time differential dual-phase-lag thermoelastic model. Meccanica 52(1–2), 349–361 (2017). https://doi.org/10.1007/s11012-016-0414-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Chiriţă, S., Ciarletta, M., Tibullo, V.: Qualitative properties of solutions in the time differential dual-phase-lag model of heat conduction. Appl. Math. Model. 50, 380–393 (2017). https://doi.org/10.1016/j.apm.2017.05.023

    Article  MathSciNet  Google Scholar 

  19. Chiriţă, S., Ciarletta, M., Tibullo, V.: On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transf. 114, 277–285 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.071

    Article  Google Scholar 

  20. Choudhuri, S.K.R.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007). https://doi.org/10.1080/01495730601130919

    Article  Google Scholar 

  21. Chiriţă, S., D’Apice, C., Zampoli, V.: The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. Int. J. Heat Mass Transf. 102, 226–232 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.019

    Article  Google Scholar 

  22. D’Apice, C., Chiriţă, S., Zampoli, V.: On the well-posedness of the time differential three-phase-lag thermoelasticity model. Arch. Mech. 68(5), 371–393 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zampoli, V., Landi, A.: A domain of influence result about the time differential three-phase-lag thermoelastic model. J. Therm. Stresses 40(1), 108–120 (2017). https://doi.org/10.1080/01495739.2016.1195242

    Article  Google Scholar 

  24. D’Apice, C., Zampoli, V.: Advances on the time differential three-phase-lag heat conduction model and major open issues. AIP Conf. Proc. 1863, 560056 (2017). https://doi.org/10.1063/1.4992739

    Article  Google Scholar 

  25. Chiriţă, S.: High-order approximations of three-phase-lag heat conduction model: some qualitative results. J. Therm. Stresses (2017). https://doi.org/10.1080/01495739.2017.1397494

    Article  Google Scholar 

  26. Rionero, S., Chiriţă, S.: The Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25(7), 935–947 (1987). https://doi.org/10.1016/0020-7225(87)90126-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Chiriţă, S.: Some applications of the Lagrange identity in thermoelasticity with one relaxation time. J. Therm. Stresses 11(3), 207–231 (1988). https://doi.org/10.1080/01495738808961933

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The results contained in the present paper have been partially presented in the Wascom 2017 International Conference in honour of Prof. Tommaso Ruggeri’s 70th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Zampoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampoli, V. Uniqueness theorems about high-order time differential thermoelastic models. Ricerche mat 67, 929–950 (2018). https://doi.org/10.1007/s11587-018-0351-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0351-6

Keywords

Mathematics Subject Classification

Navigation