Skip to main content

Advertisement

Log in

Seasonal forcing in stochastic epidemiology models

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The goal of this paper is to motivate the need and lay the foundation for the analysis of stochastic epidemiological models with seasonal forcing. We consider stochastic SIS and SIR epidemic models, where the internal noise is due to the random interactions of individuals in the population. We provide an overview of the general theoretic framework that allows one to understand noise-induced rare events, such as spontaneous disease extinction. Although there are many paths to extinction, there is one path termed the optimal path that is probabilistically most likely to occur. By extending the theory, we have identified the quasi-stationary solutions and the optimal path to extinction when seasonality in the contact rate is included in the models. Knowledge of the optimal extinction path enables one to compute the mean time to extinction, which in turn allows one to compare the effect of various control schemes, including vaccination and treatment, on the eradication of an infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharp, P.A., Cooney, C.L., Kastner, M.A., Lees, J., Sasisekharan, R., Yaffe, M.B., Bhatia, S.N., Jacks, T.E., Lauffenburger, D.A., Langer, R., Hammond, P.T.: The Third Revolution: The Convergence of the Life Sciences, Physical Sciences, and Engineering. Massachusetts Institute of Technology, Cambridge (2011)

    Google Scholar 

  2. Sharp, P.A., Langer, R.: Promoting convergence in biomedical science. Science 333(6042), 527–527 (2011)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M., Anderson, B.: Infectious Diseases of Humans: Dynamics and Control, vol. 28. Wiley Online Library, London (1992)

    Google Scholar 

  4. Bailey, N.T., et al.: The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin & Company Ltd., London (1975)

    MATH  Google Scholar 

  5. Bartlett, M.S.: An Introduction to Stochastic Processes: with Special Reference to Methods and Applications. The University Press, Cambridge (1955)

    MATH  Google Scholar 

  6. Hamer, W.H.: The Milroy Lectures on Epidemic Disease in England: The Evidence of Variability and of Persistency of Type. Bedford Press, London (1906)

    Google Scholar 

  7. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  8. Ross, R., Thomson, D.: A case of sleeping sickness studied by precise enumerative methods: regular periodical increase of the parasites disclosed. Proc. R. Soc. Lond. Ser. B 82(557), 411–415 (1910)

    Article  Google Scholar 

  9. Soper, H.E.: The interpretation of periodicity in disease prevalence. J. R. Stat. Soc. 92(1), 34–73 (1929)

    Article  MATH  Google Scholar 

  10. Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theor. Popul. Biol. 46(3), 363–394 (1994)

    Article  MATH  Google Scholar 

  11. Tsimring, L.S.: Noise in biology. Rep. Prog. Phys. 77(2), 026,601 (2014)

    Article  Google Scholar 

  12. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, New York (2004)

    Book  MATH  Google Scholar 

  13. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  14. Assaf, M., Meerson, B.: Extinction of metastable stochastic populations. Phys. Rev. E 81(2), 021,116 (2010)

    Article  Google Scholar 

  15. Dykman, M., Mori, E., Ross, J., Hunt, P.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. 100(8), 5735–5750 (1994)

    Article  Google Scholar 

  16. Elgart, V., Kamenev, A.: Rare event statistics in reaction–diffusion systems. Phys. Rev. E 70, 041,106 (2004)

    Article  MathSciNet  Google Scholar 

  17. Forgoston, E., Bianco, S., Shaw, L.B., Schwartz, I.B.: Maximal sensitive dependence and the optimal path to epidemic extinction. Bull. Math. Biol. 73, 495–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gang, H.: Stationary solution of master equations in the large-system-size limit. Phys. Rev. A 36(12), 5782 (1987)

    Article  Google Scholar 

  19. Kessler, D.A., Shnerb, N.M.: Extinction rates for fluctuation-induced metastabilities: a real space WKB approach. J. Stat. Phys. 127(5), 861–886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kubo, R., Matsuo, K., Kitahara, K.: Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9(1), 51–96 (1973)

    Article  Google Scholar 

  21. Nieddu, G., Billings, L., Forgoston, E.: Analysis and control of pre-extinction dynamics in stochastic populations. Bull. Math. Biol. 76(12), 3122–3137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwartz, I.B., Forgoston, E., Bianco, S., Shaw, L.B.: Converging towards the optimal path to extinction. J. R. Soc. Interface 8(65), 1699–1707 (2011)

    Article  MATH  Google Scholar 

  23. Nieddu, G.T., Billings, L., Kaufman, J.H., Forgoston, E. and Bianco, S.: Extinction pathways and outbreak vulnerability in a stochastic Ebola model. J. Royal Soc. Interface 14(127), 20160847 (2017)

  24. Assaf, M., Kamenev, A., Meerson, B.: Population extinction in a time-modulated environment. Phys. Rev. E 78(4), 041,123 (2008)

    Article  MathSciNet  Google Scholar 

  25. Black, A.J., McKane, A.J.: WKB calculation of an epidemic outbreak distribution. J. Stat. Mech. Theory Exp. 2011(12), P12,006 (2011)

    Article  Google Scholar 

  26. Wentzell, A.: Rough limit theorems on large deviations for Markov stochastic processes, I. Theory Probab. Appl. 21, 227–242 (1976)

    Google Scholar 

  27. Doering, C.R., Sargsyan, K.V., Sander, L.M.: Extinction times for birth–death processes: exact results, continuum asymptotics, and the failure of the Fokker–Planck approximation. Multiscale Model. Simul. 3(2), 283–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dykman, M.I., Schwartz, I.B., Landsman, A.S.: Disease extinction in the presence of random vaccination. Phys. Rev. Lett. 101(7), 078,101 (2008)

    Article  Google Scholar 

  29. Billings, L., Mier-y Teran-Romero, L., Lindley, B., Schwartz, I.B.: Intervention-based stochastic disease eradication. PloS ONE 8(8), e70211 (2013)

    Article  Google Scholar 

  30. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  31. London, W.P., Yorke, J.A.: Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal variation in contact rates. Am. J. Epidemiol. 98(6), 453–468 (1973)

    Article  Google Scholar 

  32. Schwartz, I.B., Smith, H.: Infinite subharmonic bifurcation in an seir epidemic model. J. Math. Biol. 18(3), 233–253 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Billings, L., Bollt, E.M., Schwartz, I.B.: Phase-space transport of stochastic chaos in population dynamics of virus spread. Phys. Rev. Lett. 88(23), 234,101 (2002)

    Article  Google Scholar 

  34. Bollt, E.M., Billings, L., Schwartz, I.B.: A manifold independent approach to understanding transport in stochastic dynamical systems. Phys. D Nonlinear Phenom. 173(3), 153–177 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rand, D., Wilson, H.: Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc. R. Soc. Lond. B: Ser. B 246(1316), 179–184 (1991)

    Article  Google Scholar 

  36. Dykman, M.I., Golding, B., McCann, L.I., Smelyanskiy, V.N., Luchinsky, D.G., Mannella, R., McClintock, P.V.E.: Activated escape of periodically driven systems. Chaos Interdiscip. J. Nonlinear Sci. 11(3), 587–594 (2001)

    Article  MATH  Google Scholar 

  37. Maier, R.S., Stein, D.L.: Noise-activated escape from a sloshing potential well. Phys. Rev. Lett. 86, 3942–3945 (2001)

    Article  Google Scholar 

  38. Lindley, B.S., Schwartz, I.B.: An iterative action minimizing method for computing optimal paths in stochastic dynamical systems. Phys. D Nonlinear Phenom. 255, 22–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ren, E.W., Vanden-Eijnden, E.: Minimum action method for the study of rare events. Commun. Pure Appl. Math. 57, 637–656 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: a least action principle on the space of curves. Commun. Pure Appl. Math. 61, 1052–1117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bauver, M., Forgoston, E., Billings, L.: Computing the optimal path in stochastic dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 26(8), 083,101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Fine, P.E., Clarkson, J.A.: Measles in England and Walesi: an analysis of factors underlying seasonal patterns. Int. J. Epidemiol. 11(1), 5–14 (1982)

    Article  Google Scholar 

  43. Rohani, P., Keeling, M.J., Grenfell, B.T.: The interplay between determinism and stochasticity in childhood diseases. Am. Nat. 159(5), 469–481 (2002)

    Article  Google Scholar 

  44. Glendinning, P., Perry, L.P.: Melnikov analysis of chaos in a simple epidemiological model. J. Math. Biol. 35(3), 359–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Khasin, M., Dykman, M., Meerson, B.: Speeding up disease extinction with a limited amount of vaccine. Phys. Rev. E 81(5), 051,925 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lora Billings.

Additional information

EF was supported by the National Science Foundation award CMMI-1233397. This material is based upon work while LB was serving at the National Science Foundation. We thank the reviewers whose comments have improved the article.

Appendix A: Iterative Action Minimizing Method (IAMM)

Appendix A: Iterative Action Minimizing Method (IAMM)

To analyze the dynamics of spontaneous escape from an endemic state, we numerically compute the optimal path, which is a zero-energy curve for the Hamiltonian that connects two steady state saddle points. We use the Iterative Action Minimizing Method (IAMM) [38], a numerical scheme based on Newton’s method. The IAMM is useful in the general situation where a path connecting steady states \(C_a\) and \(C_b\) starts at \(C_a\) at \(t=-\infty \) and ends at \(C_b\) at \(t=+\infty \). A time parameter t exists such that \(-\infty<t<\infty \). For this method, we require a numerical approximation of the time needed to leave the region of \(C_a\) and arrive in the region of \(C_b\). Therefore, we define a time \(T_{\epsilon }\) such that \(-\infty<-T_{\epsilon }<t<T_{\epsilon }<\infty \). Additionally, \(C(-T_{\epsilon }) \approx C_a\) and \(C(T_{\epsilon }) \approx C_b\). In other words, the solution stays very near the equilibrium \(C_a\) for \(-\infty <t\le -T_{\epsilon }\), has a transition region from \(-T_{\epsilon }<t<T_{\epsilon }\), and then stays near \(C_b\) for \(T_{\epsilon }<t<+\infty \). The interval \([-T_{\epsilon },T_{\epsilon }]\) is discretized into n segments using a uniform step size \(h=(2T_{\epsilon })/n\) or a suitable non-uniform step size \(h_k\). The corresponding time series is \(t_{k+1}=t_k+h_k\).

The derivative of the function value \(\mathbf {q}_k\) is approximated using central finite differences by the operator \(\delta _h\) given as

$$\begin{aligned} \frac{d}{dt}\mathbf {q}_k \approx \delta _h\mathbf {q}_k \equiv \frac{h^2_{k-1}\mathbf {q}_{k+1} + (h^2_k - h^2_{k-1})\mathbf {q}_k - h^2_k\mathbf {q}_{k-1} }{h_{k-1}h^2_k + h_kh^2_{k-1}}, \quad k=0,\ldots ,n. \end{aligned}$$
(39)

Clearly, if a uniform step size is chosen then Eq. (39) simplifies to the familiar form given as

$$\begin{aligned} \frac{d}{dt}\mathbf {q}_k \approx \delta _h\mathbf {q}_k \equiv \frac{\mathbf {q}_{k+1} - \mathbf {q}_{k-1} }{2h}, \quad k=0,\ldots ,n. \end{aligned}$$
(40)

Thus, one can develop the system of nonlinear algebraic equations

$$\begin{aligned} \delta _h\mathbf {x}_k - \frac{\partial H(\mathbf {x}_k,\mathbf {p}_k)}{\partial \mathbf {p}}=0, \quad \delta _h\mathbf {p}_k + \frac{\partial H(\mathbf {x}_k,\mathbf {p}_k)}{\partial \mathbf {x}}=0, \quad k=0,\ldots ,n, \end{aligned}$$
(41)

which is solved using a general Newton’s method. We let

$$\begin{aligned} \mathbf {q}_j(\mathbf {x,p})=\{\mathbf {x}_{1,j}...\mathbf {x}_{n,j},\mathbf {p}_{1,j}...\mathbf {p}_{n,j}\}^T \end{aligned}$$
(42)

be an extended vector of 2nN components that contains the \(j\mathrm{th}\) Newton iterate, where N is the number of populations. When \(j=0\), \(\mathbf {q}_0(\mathbf {x,p})\) provides the initial “guess” as to the location of the path that connects \(C_a\) and \(C_b\). Given the \(j\mathrm{th}\) Newton iterate \(\mathbf {q}_j\), the new \(\mathbf {q}_{j+1}\) iterate is found by solving the linear system

$$\begin{aligned} \mathbf {q}_{j+1}=\mathbf {q}_{j}-\frac{\mathbf {F}\left( \mathbf {q}_{j}\right) }{\mathbf {J}\left( \mathbf {q}_{j}\right) }, \end{aligned}$$
(43)

where \(\mathbf {F}\) is the function defined by Eq. (41) acting on \(\mathbf {q}_{j}\), and \(\mathbf {J}\) is the Jacobian. Equation (43) is solved using LU decomposition with partial pivoting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billings, L., Forgoston, E. Seasonal forcing in stochastic epidemiology models. Ricerche mat 67, 27–47 (2018). https://doi.org/10.1007/s11587-017-0346-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-017-0346-8

Keywords

Mathematics Subject Classification

Navigation