Skip to main content
Log in

Generalized Semiaffine linear spaces

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we introduce the notion of generalized T-semiaffine linear space of finite dimension at least three, T being a suitable set of non–negative integers, and discuss generalized [st]-semiaffine linear spaces for suitable \(s \le t\). We will present theorems on generalized \(\{0, 1\}\)-semiaffine linear spaces whose lines have length at least 4 and on finite generalized [0, 2]-semiaffine linear spaces, improving known results of Van Maldeghem and Kreuzer. In particular, finite generalized [0, 2]-semiaffine linear spaces whose lines have at least nine points are classified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The sum of two linear spaces \(\mathbb {L}=(\mathcal P, \mathcal L)\) and \(\mathbb {L}'=(\mathcal P', \mathcal L')\) is the linear space \(\mathbb {L}\oplus \mathbb {L}'\) whose points are those of \(\mathcal P\) and \(\mathcal P'\) and whose lines are the elements of \(\mathcal L \cup \mathcal L'\) and all the 2-sets \(\{x, y\}\), with \(x \in \mathcal P\) and \(y \in \mathcal P'\). A linear space is said to be degenerate if, and only if, it is the sum of two linear spaces.

  2. If s and t are two fixed non-negative integers such that \(s \le t\), then [st] will denote the set of all integers i such that \(s \le i \le t\).

  3. The classification of Lo Re and Olanda provides exceptional cases of [0, 2]-semiaffine planes, but these planes contain lines of length three.

  4. The classification of Ohler and Pickert provides just one exceptional case of \(\{1,2\}\)-semiaffine plane, the Shrikhanda plane, but this plane contains lines of length three.

References

  1. Beutelspacher, A., Kersten, A.: Finite semiaffine linear spaces. Arch. Math. 44, 557–568 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beutelspacher, A., Meinhardt, J.: On finite \(h\)-semiaffine planes. Eur. J. Comb 5, 113–122 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buekenhout, F.: Une caractérisation des espaces affins basée sur la notion de droite. Math. Zeitschrift 111, 367–371 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buekenhout, F.: Diagrams for geometries and groups. J. Comb. Th. (*) 27, 121–151 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dembowski, P.: Semiaffine Ebenen. Arch. Mat. 13, 120–131 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kreuzer, A.: Semiaffine spaces. J. Comb. Theory Ser. A 64, 63–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kreuzer, A.: Projective embedding of \([0, m]\)-spaces. J. Comb. Theory Ser. A 70, 66–81 (1995)

    Article  MATH  Google Scholar 

  8. Lo Re, P.M., Olanda, D.: On \([0,2]\)–semiaffine planes. SimonStevin, A Quart. J. Pure Appl. Math. 60(n. 2), 157–182 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Melone, N., Olanda, D.: Spazi planari \(\{1,2\}\)–semiaffini, Ric. Mat., vol. XXXVI, fasc. \(1^0\), 139–152 (1987)

  10. Oehler, M.: Endliche biaffine Inzidenzebenen. Geom. Ded. 4, 419–436 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pickert, G.: Biaffine inzidenzebenen lateinische Quadrate und 2-Assoziationschemata. Geom. Ded. 7, 281–285 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Teirlinck, L.: Combinatorial Structures, Ph.D. thesis, Dept. Math. Vrije Univ. Brussel (1976)

  13. Teirlinck, L.: On linear spaces in which every plane is either projective or affine. Geom. Ded. 4, 39–44 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Teirlinck, L.: Combinatorical properties of planar spaces and embeddability. J. Comb. Theory Ser. A 43, 291–302 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Totten, J., De Witte, P.: On a Paschian condition for linear spaces. Math. Z. 137, 173–183 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Van Maldeghem, H.: Semiaffine spaces. Electronic J. Comb. 16:R.P.18, 10 (2009)

  17. Veblen, O., Young, J.W.: Projective geometry. Blaisdell, New York (1910)

    MATH  Google Scholar 

  18. Welsh, D.J.: Matroid theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Ferrara-Dentice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrara-Dentice, E., Iannotta, G. Generalized Semiaffine linear spaces. Ricerche mat 66, 395–406 (2017). https://doi.org/10.1007/s11587-016-0306-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0306-8

Keywords

Mathematics Subject Classification

Navigation