Skip to main content
Log in

On the initial-value problem in a cold plasma model

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We consider a homogeneous, weakly ionized gas filling all of space and in it the propagation of a plane electromagnetic wave induced at positive times by the electromagnetic field story at negative times and by an assigned external current. The propagation can be described by an integro-differential equation if one takes into account the collisions between molecules and electrons by a suitable linear inheritance relation. We determine explicitly the fundamental solution and therefore solve the associated classical initial value problem with completely arbitrary initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In absence of collisions (\( a\!=\!0\)) the formula amounts to saying that the electron velocity is the integral of its acceleration over the previous time, and the acceleration is proportional to the electric field. In the presence of collisions such proportionality holds only between two subsequent collisions. The rationale behind (5) is that therefore the effect of the electric field at earlier and earlier times is more and more damped by the time-dependent exponential in the integral.

  2. In fact, the change of independent variable \(x\mapsto x' = \sqrt{\varepsilon \mu } \; x\) reduces \(\varepsilon \mu \) to 1; and under the above assumptions the solution for general polarization is the superposition of two linearly polarized electromagnetic fields, that are orthogonal to each other.

References

  1. Graffi, D.: Sopra alcuni fenomeni ereditari dell’elettrologia. Rend. Istituto Lombardo (2) 69 (1936)

  2. Graffi, D.: Corso C.I.S.M., nonlinear problem in mathematical physics, Udine, 5–13 ottobre (1978)

  3. Graffi, D.: Sulla propagazione nei mezzi dispersivi. Ann. Mat. Pura ed Appl. Ser. IV 60 (1963)

  4. Fabrizio, M.: Sull’equazione di propagazione nei mezzi viscoelastici. Istituto Lombardo (Rend. Sc.) A 102 (1968)

  5. Maio, A., Monte, A.M.: Sulla propagazione delle onde elettromagnetiche in un gas ionizzato. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Naturali 63, 1–2 (1977)

  6. Graffi, D.: Sopra alcuni fenomeni ereditari dell’elettrologia. Rend. Istituto Lombardo (2) 69 (1936)

  7. Mazziotti, E., Renno, P.: Sulla propagazione ondosa di un sistema viscoelastico lineare in presenza di forze di massa. Annali dell’Universitá di Ferrara, Nuova Serie, Sez. VII, Scienze Matematiche, vol. XXV (1979)

  8. Fabrizio, M., Polidoro, S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81, 1245–1264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giorgi, C., Muñoz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lorentz, H.A.: The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat. B.Y. Teubner, Leipzig (1909) (reprint Dover, New-York (1952))

  11. Chen, F.F.: Introduction to plasma physics. Springer London Limited, London (2012)

    Google Scholar 

  12. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  13. Burnett, D.: The propagation of radio waves in an ionised atmosphere. Math. Proc. Camb. Phil. Soc. 27, 578–587 (1939). doi:10.1017/S0305004100009841

    Article  Google Scholar 

  14. Graffi, D.: Onde elettromagnetiche. CNR, Roma (1965)

    Google Scholar 

  15. Courant, R., Hilbert, D.: Methods of Mathematical Phisics, vol. II. Interscience Publishers, New York (1962)

    Google Scholar 

  16. Ghizzetti, A., Ossicini, A.: Trasformate di Laplace e calcolo simobilico. UTET, Italy (1971)

  17. Erdelyi, A., Magnus, W., Oberhettimnger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. I. Mc Graw Hill Book Company, New York (1954)

    Google Scholar 

  18. Debnath, L., Bhatta, D.: Integral Transforms and their Applications. Chapman & Hall/CRC Press, London/Boca Raton (2010)

    Google Scholar 

  19. Renno, P.: Soluzione di un problema al contorno della Termochimica. Edizioni Glaux, Napoli (1971)

    Google Scholar 

  20. Renno, P.: Un problema di aerotermochimica linearizzata: soluzione ed approssimazione asintotica. Rend. Acc. Sci. Fis. Mat. Napoli 39 (1972)

  21. Renno, P.: On a Wave Theory for the Operator \(\epsilon \partial _t(\partial ^2_t - c^2_1\Delta _n)+\partial ^2_t-c^2_0\Delta _n\). Ann. Mat. Pura ed Appl. (IV) CXXXVI (1984)

  22. John, F.: Partial Differential Equations, 4th edn. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by UniNA and Compagnia di San Paolo under the grant “STAR Program 2013”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fiore.

Additional information

Communicated by Salvatore Rionero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiore, G., Maio, A. & Renno, P. On the initial-value problem in a cold plasma model. Ricerche mat. 63 (Suppl 1), 157–164 (2014). https://doi.org/10.1007/s11587-014-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-014-0206-8

Keywords

Mathematics Subject Classification

Navigation