Skip to main content
Log in

Synthesis and characterization of SnO2-La2O3 for electrochemical supercapacitor performance in redox additive electrolyte

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, chemical precipitation was used for preparing the SnO2-La2O3 metal oxide supercapacitor. The prepared material was characterized by XPS, FE-SEM, HR-TEM, and XRD. The enhanced conductivity and low resistance of the SnO2-La2O3 material are coupled in the presence of an optimized redox additive electrolyte, specifically 3 M KOH (KH) with 0.2 M K3[Fe(CN)6] (RE). Within a potential window of − 0.3 to 0.7 V, the suggested hybrid electrode in the three-electrode system exhibited an ultrahigh specific capacitance of 637 F g−1 at a current density of 1 A g−1. The electrode utilizing an electrolyte based on redox additives demonstrates synergistic effects and enhances capacitance performance by up to 637 F g−1. The SnO2-La2O3 electrode in KH + RE has a greater capacity for energy storage than the aqueous electrolyte of KOH. By connecting two symmetrical supercapacitors in series and activating a red light-emitting diode (which illuminated for 2 min.), the device’s practicality was further confirmed. With consistent cyclic stability for up to 10,000 cycles, the dual redox additive-based electrolyte demonstrated good cyclic performance in specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ge M, Cao C, Huang J, Li S, Chen Z, Zhang KQ, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801

    Article  CAS  Google Scholar 

  2. Xiong P, Zhu J, Zhang L, Wang X (2016) Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. Nanoscale Horiz 1:340–374

    Article  CAS  PubMed  Google Scholar 

  3. Kim JS, Han HS, Shin S, Han GS, Jung HS, Hong KS, Noh JH (2014) In2O3:Sn/ TiO2/CdS heterojunction nanowire array photoanode in photoelectrochemical cellsm Inter. J Hydrog Energy 39:17473–17480

    Article  CAS  Google Scholar 

  4. Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GSW, Shelow D, Hindin DA, Kilaru VJ, Preuss PW (2013) The changing paradigm of air pollution monitoring. Environ Sci Technol 47:11369–11377

    Article  CAS  PubMed  Google Scholar 

  5. Chowdhury SR, Ray A, Chougule SS, Min J, Anto Jeffery A, Ko K, Kim Y, Sa Das, Jung N (2022) Mixed spinel Ni-Co oxides: An efficient bifunctional oxygen electrocatalyst for sustainable energy application. ACS Appl Energy Mater 5:4421–4430

    Article  Google Scholar 

  6. Banik S, Mahajan A, Ray A, Majumdar D, Das S, Bhattacharya SK (2016) Temperature control synthesis of platinum nanoparticle-decorated reduced graphene oxide of different functionalities for anode-catalytic oxidation of methanol. FlatChem 16:100111

    Article  Google Scholar 

  7. Lim SP, Huang NM, Lim HN (2013) Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram Int 39:6647–6655

    Article  CAS  Google Scholar 

  8. Asaithambi S, Sakthivel P, Karuppaiah M, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2021) Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications. J Alloys Compd 853:157060

    Article  CAS  Google Scholar 

  9. Shanmugapriya V, Hariharan G, Arunpandiyan S, Babu M, Bharathi S, Selvakumar B, Arivarasan A (2023) Redox additives dependent supercapacitor performances of ZnO/SnO2@MWCNT nanocomposites. Diam Relat Mater 140:110482

    Article  CAS  Google Scholar 

  10. Lokhande PE, Chavan US, Pandey A (2020) Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem Energy Rev 3:155–186

    Article  CAS  Google Scholar 

  11. Lokhande PE, Kadam V, Jagtap C, Chavan US, Rednam U, Pathan HM (2022) Hierarchical ultrathin nanosheet of Ni(OH)2/rGO composite chemically deposited on Ni foam for NOx gas sensors. ES Mater Manuf 17:53–56

  12. Molahalli V, Bhat VS, Shetty A, Hundekal D, Toghan A, Hegde G (2023) ZnO doped SnO2nano flower decorated on graphene oxide/polypyrrole nanotubes for symmetric supercapacitor applications. J Energy Storage 69:107953

    Article  Google Scholar 

  13. Murugan A, Siva V, Shameem A, Asath Bahadur S, Sasikumar S, Nallamuthu S (2020) Structural and charge density distribution studies on Tin Oxide nanoparticles for Supercapacitor application. J Energy Storage 28:101194

    Article  Google Scholar 

  14. Jagtap C, Kadam V, Kamble B, Lokhande PE, Pakdel A, Kumar D, Udayabhaskar R, Vedpathak A, Chaure NB, Pathan HM (2024) Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. J Energy Storage 83:110666

    Article  Google Scholar 

  15. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Lokhande CD (2010) A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl Surf Sci 256:4411

    Article  CAS  Google Scholar 

  16. Asaithambi S, Sakthivel P, Karuppaiah M, UdhayaSankar G, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2020) Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J Energy Storage 31:101530

    Article  Google Scholar 

  17. Trindade TN, Silva LA (2018) Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation. J Alloys Compd 735:400–408

    Article  CAS  Google Scholar 

  18. Ahmed A, Verma S, Mahajan P, Sundramoorthy AK, Arya S (2023) Upcycling of surgical facemasks into carbon-based thin film electrode for supercapacitor technology. Sci Rep 13:12146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystallineNiO thin films for supercapacitor application. Appl Surf Sci 255:2603

    Article  CAS  Google Scholar 

  20. Anshu S, Priya S, Mandal D, Rahul R, Singh T, Chandra A (2023) 2D flakes of Au decorated SnO2 nanoparticles as electrode material for high performing supercapacitor. J Phys D: Appl Phys 56:205501

    Article  Google Scholar 

  21. Kandalkar SG, Gunjakar JL, Lokhande CD (2008) Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl Surf Sci 254:5540

    Article  CAS  Google Scholar 

  22. Padha B, Verma S, Mahajan P, Sundramoorthy AK, Arya S (2023) An insight into the wearable technologies based on novel hybrid piezoelectric-triboelectric nanogenerators. Energy Technol 11:2300224

    Article  CAS  Google Scholar 

  23. Wu NL, Kuo SL, Lee MH (2002) Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J Power Sources 104:62–65

    Article  CAS  Google Scholar 

  24. Mane RS, Chang J, Hama D, Pawar BN, Ganesh T, Cho BW, Lee J, Han S (2009) Charge carrier photogeneration and hole transport properties of blends of a π-conjugated polymer and an organic-inorganic hybrid material. Curr Appl Phys 9:87

    Article  Google Scholar 

  25. Kadam VS, Jagtap CV, Lokhande PE, Bulakhe NR, Kang SW, Yadav AA, Pathan HM (2023) One-step deposition of nanostructured Ni(OH)2/rGO for supercapacitor applications. J Mater Sci: Mater Electron 34:1083

    CAS  Google Scholar 

  26. Lokhande PE, Chavan US, Suraj B, Amol K, Sonal D (2001) New-generation materials for flexible supercapacitors, 1st edn. Wiley & Sons, USA, pp 227–313

    Google Scholar 

  27. Raja A, Selvakumar K, Swaminathan M, Kang M (2021) Redox additive based rGO-Dy2WO6-ZnO nanocomposite for enhanced electrochemical supercapacitor applications. Synth Met 276:116753

    Article  CAS  Google Scholar 

  28. Arunpandiyan S, Bharathi S, Pandikumar A, EzhilArasi S, Arivarasan A (2020) Structural analysis and redox additive electrolyte based supercapacitor performance of ZnO/CeO2 nanocomposite. Mater Sci Semicond Process 106:104765

    Article  CAS  Google Scholar 

  29. Sundriyal S, Shrivastav V, Sharma M, Mishra S, Deep A (2019) Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte. J Alloy Comp 790:377–387

  30. Ramachandran R, Xuan W, Zhao C, Leng X, Sun D, Luoa D, Wang F (2018) Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Adv 8:3462–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahajan P, Verma S, Padha B, Ahmed A, Arya S (2023) Manganese oxide and nickel oxide thin films on polyester to enable self-charging wearable supercapacitor. J Alloy Compd 968:171904

    Article  CAS  Google Scholar 

  32. Verma S, Mahajan P, Padha B, Ahmed A, Arya S (2023) Nanowires based solid-state asymmetric self-charging supercapacitor driven by PVA-ZnO-KOH flexible piezoelectric matrix. Electrochim Acta 465:142933

    Article  CAS  Google Scholar 

  33. Arunpandiyan S, Vinoth S, Pandikumar A, Raja A, Arivarasan A (2021) Decoration of CeO2 nanoparticles on hierarchically porous MnO2 nanorods and enhancement of supercapacitor performance by redox additive electrolyte. J Alloy Compd 861:158456

    Article  CAS  Google Scholar 

  34. Mohamed Riyas Z, Priya C, Ponmani S, Prabhu MR (2023) Exploration of La2O3-CuO nanocomposite as an effective electrode material for asymmetric supercapacitor applications. J Alloys Compd 965:171350

    Article  Google Scholar 

  35. De la Torre Pari SA, Aquino JCR, Carlos-Chilo AF, Guerra JA, Coaquira JAH, Pacheco-Salazar DG, Felix JF, Solis JL, Aragon FFH (2023) Enhancing the photoconductivity and gas sensing performance of TiO2/SnO2 heterostructures tuned by the thickness of the SnO2 upper layer. Appl Surf Sci 613:156028

    Article  Google Scholar 

  36. Cornaglia LM, Múnera J, Irusta S, Lombardo EA (2004) Raman studies of Rh and Pt on La2O3catalysts used in a membrane reactor for hydrogen production. Appl Catal A 263:91–101

    Article  CAS  Google Scholar 

  37. Vargheese S, Gokila N, Kumar RS, Kumar RTR, Huh YS, Haldorai Y (2023) Covalent framework derived internal-doped porous carbon supported SnO2 composite: construction of a 10 V asymmetric supercapacitor and selective electrochemical determination of N-(4-Hydroxyphenyl) acetamide. J Alloys Compd 948:169726

    Article  CAS  Google Scholar 

  38. Maheshwaran G, Selvi MM, Muneeswari RS, Bharathi AN, Kumar MK, Sudhahar S (2021) Green synthesis of lanthanum oxide nanoparticles using Moringaoleiferaleaves extract and its biological activities. Adv Powder Technol 32(6):1963–1971

    Article  CAS  Google Scholar 

  39. Yedluri AK, Kim HJ (2018) Preparation and electrochemical performance of NiCo2O4@NiCo2O4 composite nanoplates for high performance supercapacitor applications. N J Chem 42:1997

    Google Scholar 

  40. Yuan X, Yan X, Zhou C, Wang J, Wang D, Jiang H, Zhu Y, Tao X, Cheng X (2020) Decorating carbon nanosheets with copper oxide nanoparticles for boosting the electrochemical performance of symmetric coin cell supercapacitor with different electrolytes. Ceram Int 46(1):435–443

    Article  CAS  Google Scholar 

  41. Arunpandiyan S, Raja A, Bharathi S, Arivarasan A (2021) Fabrication of ZnO/NiO:rGOcoated Ni foam binder-free electrode via hydrothermal method for supercapacitor application. J Alloy Compd 883:160791

    Article  CAS  Google Scholar 

  42. Muthuselvi M, Jeyasubramanian K, Hikku GS, Muthuselvan M, Eswaran M, Senthil Kumar N, Ponnusamy VK (2021) Rare earth metal oxide-doped reduced graphene-oxide nanocomposite as binder-free hybrid electrode material for supercapacitor application. Int J Energy Res 45(6):8255–8266

    Article  CAS  Google Scholar 

  43. Verma S, Padha B, Arya S (2022) Thermoelectric-powered supercapacitors based on Ni-Mn nanowires driven by quadripartite electrolyte. ACS Appl Energy Mater 5:9090–9100

    Article  CAS  Google Scholar 

  44. Ray A, Roy A, Saha S, Ghosh M, Chowdhury SR, Maiyalagan T, Bhattacharya SK, Das S (2019) Electrochemical energy storage properties of Ni-Mn-oxide electrodes for advance asymmetric supercapacitor application. Langmuir 35:8257–8267

    CAS  PubMed  Google Scholar 

  45. Morshed M, Wang J, Gao M, Cong C, Wang Z (2021) Polyaniline and rare earth metal oxide composition: a distinctive design approach for supercapacitor. Electrochim Acta 370:137714

    Article  CAS  Google Scholar 

  46. Rai A, Sharma AL, Thakur AK (2014) Evaluation of aluminum doped lanthanum ferrite-based electrodes for supercapacitor design. Solid State Ion 262:230–233

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Researchers Supporting Project Number (RSPD2024R551) at King Saud University, Riyadh, Saudi Arabia.

This research was supported by the “Korea Medical Device Development Fund (KMDF) grant funded by the Korea government (KMDF-PR-202009010154)”.

Author information

Authors and Affiliations

Authors

Contributions

S. A.: Conceptualization, Methodology, Writing-Original Draft Preparation. V. T.: writing-review

and editing, N. H. A.: project administration, funding acquisition. S. M.: project administration, funding acquisition. J. K.: Writing-Review & Editing, Visualization, methodology. V. S.: Visualization, methodology, validation, formal

analysis. K.S.: Review & Editing, Software, and visualization. A. M.: Visualization, methodology, validation, formal analysis.

Corresponding authors

Correspondence to Subramanian Ashok Kumar, Jinho Kim or Vadivel Siva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (MP4 9411 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.A., Thirumal, V., Alotaibi, N.H. et al. Synthesis and characterization of SnO2-La2O3 for electrochemical supercapacitor performance in redox additive electrolyte. Ionics (2024). https://doi.org/10.1007/s11581-024-05528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05528-y

Keywords

Navigation