Skip to main content
Log in

Research progress of industrial application of membrane electrolysis technology

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Membrane (ion membrane) electrolysis technology has gained a lot of attention and development because of its function and advantage of making full use of the two-stage reaction and separating the products of the two poles. In particular, the membrane electrolysis industry has a great potential to grow in the context of the transformation from “carbon-driven” to “electrically driven.” There are many systems that require membrane or ion membrane electrolysis. Typical ones are electrolytic water to hydrogen, chlor-alkali, electrodialysis, electrometallurgy, etc. In this paper, several typical membrane (ion membrane) electrolysis scenarios are selected and analyzed in detail with respect to their principles, development history, characteristics, problems faced, and development prospects. A theoretical basis is laid for the development and application of efficient industrialized membrane electrolysis technology, which will be beneficial to the technological progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data in this manuscript has not been published elsewhere and has not been considered by other publishers.

Abbreviations

IEMs:

Ion exchange membranes

CEMs:

Cation exchange membranes

AWE:

Alkaline water electrolysis

PEM:

Proton exchange membrane electrolysis

AEM:

Alkaline ion membrane electrolysis

SOE:

Solid oxide electrolytic

SOEC:

Solid oxide electrolytic cell

AEMWE:

Anion exchange membrane water electrolysis

YSZ:

Y2O3-stabilized ZrO2

ScSZ:

Scandium-stabilized zirconium oxide

LSM:

La1-xSrxMnO3

HP:

Hydrogen production

PFSA:

Perfluorosulfonic acid membrane

PFCA:

Perfluoro carboxylic acid membrane

PTFE:

Polytetrafluoroethylene

ED:

Electrodialysis

SCT-SAPs:

Side chain sulfonated aromatic polymers

R s :

Measured internal resistance of the membrane [Ω]

A :

Area of the electrode [cm2]

R :

R = 8.314 J/(mol·K) is the universal gas constant

T :

Reaction temperature [K]

F :

Faraday’s constant [C·mol−1]

φ m :

Membrane potential

φ s :

Solution potential

σ :

Porosity

References

  1. Madaleno M, Dogan E, Taskin D (2022) A step forward on sustainability: the nexus of environmental responsibility, green technology, clean energy and green finance. Energy Econ 109:105945

    Article  Google Scholar 

  2. Allan G, McGregor P, Swales K (2017) Greening regional development: employment in low-carbon and renewable energy activities. Reg Stud 51(8):1270–1280

    Article  Google Scholar 

  3. Wu LT (1999) Characteristics of ionic membrane and its application in chlor-alkali production. J Pet Technol 9(2):84–90

    Google Scholar 

  4. Crutzen PJ, Brauch HG (2016) A pioneer on atmospheric chemistry and climate change in the Anthropocene, vol 50. Springer

    Google Scholar 

  5. Zalasiewicz J, Williams M (2011) The Anthropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society A: Mathematical. Phys Eng Sci 369(1938):835–841

    Google Scholar 

  6. Zhang X, Hu J, Cheng X (2021) Double metal-organic frameworks derived Fe-Co-Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting. Electrochim Acta 367:137536

    Article  CAS  Google Scholar 

  7. Jin H, Guo C, Liu X (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 118(13):6337–6408

    Article  CAS  PubMed  Google Scholar 

  8. Kander A, Malanima P, Warde P (2014) Power to the people. In: Power to the people. Princeton University Press

    Google Scholar 

  9. Adom PK, Amuakwa-Mensah F, Agradi MP (2021) Energy poverty, development outcomes, and transition to green energy. Renew Energy 178:1337–1352

    Article  Google Scholar 

  10. Stern DI, Burke PJ, Bruns SB (2019) The impact of electricity on economic development. In: A Macroeconomic Perspective

    Google Scholar 

  11. Alam MS, Miah MD, Hammoudeh S (2018) The nexus between access to electricity and labour productivity in developing countries. Energy Policy 122:715–726

    Article  Google Scholar 

  12. Leng Y, Chen G, Mendoza AJ (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134(22):9054–9057

    Article  CAS  PubMed  Google Scholar 

  13. Tan Y, Yang H, Cheng J (2022) Preparation of hydrogen from metals and water without CO2 emissions. Int J Hydrog Energy 47(90)

  14. Shi J (2001) Membrane technical handbook. Chemical Industry Press

    Google Scholar 

  15. Hoek E, Tarabara VV. Encyclopedia of membranescience and technology (2013).

    Book  Google Scholar 

  16. Meyer KH, Straus W (1940) La permeabilite des membranes VI. Sur le passage du courant electrique a travers des membranes sélectives. Helv Chim Acta 23(1):795–800

    Article  CAS  Google Scholar 

  17. Nishiwaki T (1972) Concentration of electrolytes prior to evaporation with an electromembrane process. In: Industrial Processing with Membranes, pp 83–106

    Google Scholar 

  18. Grot W. (1973) Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. U.S. Patent No. 3,770,567

  19. Paidar M, Fateev V, Bouzek K (2016) Membrane electrolysis—history, current status and perspective. Electrochim Acta 209:737–756

    Article  CAS  Google Scholar 

  20. Pourcelly G, Gavach C (2000) Electrodialysis water splitting-application of electrodialysis with bipolar membranes. Handbook on bipolar membrane technology, vol 17. Twente University Press, Enschede

    Google Scholar 

  21. Kogure M, Ohya H, Paterson R (1997) Properties of new inorganic membranes prepared by metal alkoxide methods Part II: new inorganic-organic anion-exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents. J Membr Sci 126(1):161–169

    Article  CAS  Google Scholar 

  22. Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263(1-2):1–29

    Article  CAS  Google Scholar 

  23. Daufin G, Escudier JP, Carrere H (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod Process 79(2):89–102

    Article  CAS  Google Scholar 

  24. Tarvainen T, Svarfvar B, Akerman S (1999) Drug release from a porous ion-exchange membrane in vitro. Biomaterials 20(22):2177–2183

    Article  CAS  PubMed  Google Scholar 

  25. Kim YH, Moon SH (2001) Lactic acid recovery from fermentation broth using one-stage electrodialysis. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 76(2):169–178

    Article  CAS  ADS  Google Scholar 

  26. Guido S (2003) Ionic membrane technologies for the recovery of valuable chemicals from waste waters. Ann Chim 93(9-10):817–826

    Google Scholar 

  27. Bazinet L, Lamarche F, Ippersiel D (1998) Bipolar-membrane electrodialysis: applications of electrodialysis in the food industry. Trends Food Sci Technol 9(3):107–113

    Article  CAS  Google Scholar 

  28. Zuo P, Ziang X, Zhu Q (2022) Ion exchange membranes: constructing and tuning ion transport channels. Adv Funct Mater 32(52)

  29. Wang FY (2001) History of organic electrochemistry. Chemistry Education

    Google Scholar 

  30. Lagadec MF, Zahn R, Wood V (2019) Characterization and performance evaluation of lithium-ion battery separators. Nat Energy 4(1):16–25

    Article  CAS  ADS  Google Scholar 

  31. Wang SF (2000) Theoretical modification of ion migration pathways and selective permeability. J Lanzhou Railway Inst 19(3):70–74

    CAS  Google Scholar 

  32. Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1(1):73–90

    Article  CAS  Google Scholar 

  33. Donnan FG (1934) Die genaue Thermodynamik der Membrangleichgewichte. II. Zeitschrift fur Physikalische Chemie 168(1):369–380

    Article  Google Scholar 

  34. Hanai T (1981) Membrane and ions theory and calculation of mass transport, pp 221–244

    Google Scholar 

  35. Tanaka Y (2015) Ion exchange membranes: fundamentals and applications. Elsevier

    Book  Google Scholar 

  36. Wu S, Xiao R, Li H (2022) New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. J Mater Chem A 10(6):3093–3101

    Article  MathSciNet  CAS  Google Scholar 

  37. Zhao H, Yuan ZY (2023) Progress and perspectives for solar-driven water electrolysis to produce green hydrogen. Adv Energy Mater:2300254

  38. Huang Y, Gong Q, Song X (2016) Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10(12):11337–11343

    Article  CAS  PubMed  Google Scholar 

  39. Yin J, Fan Q, Li Y (2016) Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J Am Chem Soc 138(44):14546–14549

    Article  CAS  PubMed  Google Scholar 

  40. Yu C, Han X, Liu Z (2018) An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon 126:437–442

    Article  CAS  Google Scholar 

  41. Adabi H, Shakouri A (2021) High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat Energy 6(8):834–843

    Article  CAS  ADS  Google Scholar 

  42. Zhan T, Bie R, Shen Q, Lin L, Wu A, Dong P (2020) Application of electrolysis water hydrogen production in the field of renewable energy power generation. IOP Conference Series: Earth and Environmental Science 598(1):012088

    Article  Google Scholar 

  43. Vincent I, Bessarabov D (2018) Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew Sustain Energy Rev 81:1690–1704

    Article  CAS  Google Scholar 

  44. Wan L, Xu ZA, Wang PC (2021) Progress of alkaline-resistant ion membranes for hydrogen production by water electrolysis. Chemical Industry and Engineering Progress 6161–6175

  45. Li C, Baek JB (2021) The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 87:106162

    Article  CAS  Google Scholar 

  46. Thomas D. (2019) Large scale PEM electrolysis: technology status and upscaling strategies. 8 October 2019. http://hybalance.eu/wp-content/uploads/2019/10/Large-scale-PEM-electrolysis.pdf.

  47. Abbasi R, Setzler BP, Lin S (2019) A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv Mater 31(31):1805876

    Article  Google Scholar 

  48. Tunold R, Marshall AT, Rasten E, Tsypkin M, Owe L-E, Sunde S (2010) Materials for electrocatalysis of oxygen evolution process in pem water electrolysis cells. ECS Trans 25(23):103–117. https://doi.org/10.1149/1.3328515

    Article  CAS  Google Scholar 

  49. Chauvy R, Dubois L, Lybaert P (2020) Production of synthetic natural gas from industrial carbon dioxide. Appl Energy 260:114249

    Article  CAS  Google Scholar 

  50. Xue FM, Su JC, Li PP (2021) Application of proton exchange membrane electrolysis of water hydrogen production technology in power plant. IOP Conference Series Earth and Environmental Science 631:012079

    Article  Google Scholar 

  51. Wang PC (2021) Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective. J Chem Ind Eng

  52. Zhang J, Ren LB, Li YH, Xu ZB (2008) Technical progress of proton exchange membrane water electrolyzer. Power Technol 32(4):261–265

    Google Scholar 

  53. Goni-Urtiaga A, Presvytes D, Scott K (2012) Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis. Int J Hydrog Energy 37(4):3358–3372

    Article  CAS  Google Scholar 

  54. Mi WL, Jun FR (2021) Progress and application prospects of PEM water electrolysis technology for hydrogen production. Petroleum processing and petrochemicals 52(10):78

    Google Scholar 

  55. Carmo M, Fritz DL, Mergel J (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    Article  CAS  Google Scholar 

  56. Kumar SS, Himabindu V (2019) Hydrogen production by PEM water electrolysis–a review. Mater Sci Energy Technol 2(3):442–454

    Google Scholar 

  57. Ganci F, Lombardo S, Sunseri C (2018) Nanostructured electrodes for hydrogen production in alkaline electrolyzer. Renew Energy 123:117–124

    Article  CAS  Google Scholar 

  58. Zhang W, Yu B, Chen J (2008) Hydrogen production through solid oxide electrolysis at elevated temperatures. Prog Chem

  59. Jacobs JH, Hunter JW, Yaroll WH (1946) Operations of electrolytic manganese pilot plant at Boulder City. Technical Report Archive & Image Library

  60. Chen T, Wang SR (2014) Water electrolysis using SOECs: A review. Journal of Ceramics

  61. Maskalick NJ (1986) High temperature electrolysis cell performance characterization. Int J Hydrogen Energy 11(9):563–570

    Article  CAS  Google Scholar 

  62. Spacil HS, Tedmon CS (1969) Electrochemical dissociation of water vapor in solid oxide electrolyte cells: II. Materials, fabrication, and properties. J Electrochem Soc 116(12):1627

    Article  CAS  Google Scholar 

  63. Donitz W, Erdle E (1985) High-temperature electrolysis of water vapor—status of development and perspectives for application. Int J Hydrogen Energy 10(5):291–295

    Article  Google Scholar 

  64. Brien JE, Stoots CM, Herring JS (2005) Performance measurements of solid-oxide electrolysis cells for hydrogen production, pp 156–163

    Google Scholar 

  65. Ni M, Leung MKH, Leung DYC (2008) Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrogen Energy 33(9):2337–2354

    Article  CAS  Google Scholar 

  66. Tsipis EV, Kharton VV (2011) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. J Solid State Electrochem 15(5):1007–1040

    Article  CAS  Google Scholar 

  67. Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16

    Article  CAS  Google Scholar 

  68. Kamlungsua K, Su PC, Chan SH (2020) Hydrogen generation using solid oxide electrolysis cells. Fuel Cells 20(6):644–649

    Article  CAS  Google Scholar 

  69. Du YC, Lei H, Qian YH (2021) Hydrogen production technology and development status of electrolyzed water. In: Shanghai Energy Saving

    Google Scholar 

  70. Mao Z (2015) Thoughts on chlor alkali production process. Chemical Management 14:183–183

    Google Scholar 

  71. Ito H, Manabe A (2022) Chlor–alkali electrolysis. Electrochemical Power Sources: Fundamentals, Systems, and Applications. pp 281–304

    Chapter  Google Scholar 

  72. Japan Soda Industry Association. Centurial soda industry in Japan. (1982).

    Google Scholar 

  73. Qiao XF, Guo J, Liu X (2021) Structure and process control principle of ion membrane electrolyzer. Chlor-alkali Industry 12(57):10–20

    Google Scholar 

  74. Yue WT, Liu XM, Liu GZ (2015) Effect of current density on the transfer characteristics of chlor-alkali industrial ion membrane electrolyzers. Ciesc J 66(3):915–923

    CAS  Google Scholar 

  75. Li YK (2011) Problems and countermeasures in membrane caustic soda production in chlor alkali enterprises. Safety Health and Environ 11(5):52–53

    CAS  Google Scholar 

  76. Chen DS (1998) Study on treatment of wastewater by membraneseparation technology. Membr Sci Technol 18(5):32–34

    CAS  Google Scholar 

  77. Scarazzato T, Panossian Z (2017) A review of cleaner production in electroplating industries using electrodialysis. J Clean Prod 168:1590–1602

    Article  CAS  Google Scholar 

  78. Juda W, McRae WA (1950) Coherent ion-exchange gels and membranes. J Am Chem Soc 72(2):1044–1044

    Article  CAS  Google Scholar 

  79. Mohammadi T, Razmi A, Sadrzadeh M (2004) Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination 167:379–385

    Article  CAS  Google Scholar 

  80. Hua HL, Wu GX, Liu K (2001) New advances in electrodialysis technology. Environ Pollution Control Technol Equip 2(3):44

    CAS  Google Scholar 

  81. Xing GL, Wang XY, Zhao H (2006) Research progress of electrodialysis membrane fouling. Salt and Chem Industry 35(6):42–46

    Google Scholar 

  82. Min KJ, Kim JH, Park KY (2021) Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment. Sci Total Environ 757:143762

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Zhao Y, Li Y, Yuan S (2019) A chemically assembled anion exchange membranesurface for monovalent anion selectivity and fouling reduction. J Mater Chem A 7(11):6348–6356

    Article  CAS  Google Scholar 

  84. Bazinet L, Geoffroy TR (2020) Electrodialytic processes: market overview, membrane phenomena, recent developments and sustainable strategies. Membranes 10(9):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang WR, Fan X (2009) Electrodialysis concentrates seawater to produce salt. Water Treat Technol 35(2):1–4

    ADS  Google Scholar 

  86. Wang HG, Wang XJ (2017) Research progress of electrodialysis seawater desalination technology. Guangdong Chem Indus 44(20):138–140

    Google Scholar 

  87. Osborn CS. Electrodeposition of iron: US884075. 1908.

    Google Scholar 

  88. Boucher A. (1914) Process for the industrial manufacture of electrolytic iron: US1086132

  89. Gao CJ, Ruan GL (2016) Seawater desalination technology and engineering. Chemical Industry Press, Beijing

    Google Scholar 

  90. Peng FB, Jiao XN (2008) Development and application of new diaphragms used in electrolyser for hydrogen preparation. Journal of Textile Research

  91. Gonzalez A, Grageda M, Ushak S (2017) Assessment of pilot-scale water purification module with electrodialysis technology and solar energy. Appl Energy 206:1643–1652

    Article  CAS  ADS  Google Scholar 

  92. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288

    Article  CAS  Google Scholar 

  93. Yang J, Tang C, Yang S (2009) The separation and electrowinning of bismuth from a bismuth glance concentrate using a membrane cell. Hydrometallurgy 100(1-2):5–9

    Article  CAS  Google Scholar 

  94. Zeng W (2006) Problems and countermeasures in the export of electrolytic manganese. China Manganese Indus 24(3):19–20

    MathSciNet  Google Scholar 

  95. Liu B, Lyu K, Chen Y (2020) Energy efficient electrodeposition of metallic manganese in an anion-exchange membrane electrolysis reactor using Ti/IrO2–RuO2–SiO2 anode. J Clean Prod 258:120740

    Article  CAS  Google Scholar 

  96. Lu J, Dreisinger D, Gluck T (2014) Manganese electrodeposition—a literature review. Hydrometallurgy 141:105–116

    Article  CAS  Google Scholar 

  97. Yu XZ, Li NX (2017) Research on purification ofmanganese sulfate in electrolytic manganese industry. Inorganic Chemicals Industry

  98. Huang J, Du HW, Chen G (2020) Analysis of electrolytic manganese current efficiency control mechanism of integrated membrane assembly. Appl Chem 49(2):61–62

    Google Scholar 

  99. Duan N, Fan W, Changbo Z (2010) Analysis of pollution materials generated from electrolytic manganese industries in China. Resour Conserv Recycl 54(8):506–511

    Article  Google Scholar 

  100. Jiao P, Xu F, Li J (2016) The inhibition effect of SeO2 on hydrogen evolution reaction in MnSO4-(NH4)2SO4 solution. Int J Hydrogen Energy 41(2):784–791

    Article  CAS  Google Scholar 

  101. Fan X, Xi S, Sun D (2012) Mn-Se interactions at the cathode interface during the electrolytic-manganese process. Hydrometallurgy 127:24–29

    Article  Google Scholar 

  102. Mostad E, Rolseth S, Thonstad J (2008) Electrowinning of iron from sulphate solutions. Hydrometallurgy 90(2-4):213–220

    Article  CAS  Google Scholar 

  103. Badenhorst WD, Rossouw C, Cho H (2019) Electrowinning of iron from spent leaching solutions using novel anion exchange membranes. Membranes 9(11):137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu QS (2022) Analysis of ultra-low-carbon ironmaking technology path. Prog Chem 41(3):1391–1398

    Google Scholar 

  105. Cadarelli F (2011) Electrochemical method for recovering useful materials of metallic iron and sulfuric acid from iron-rich sulfate waste, mining residues and pickling liquids. AT503864T, 2011. CN102084034A

  106. Pham AQ, Nijhawan S, Alvarez A (2022) Iron conversion system and applications. WO2022204387A1.

Download references

Funding

The National Natural Science Foundation of China (No. 51504231), State Key Laboratory of Multiphase Complex Systems (No. MPCS-2022-A-02), Yunnan Ten Thousand Talents Plan Young & Elite Talents Project (YNWR-QNBJ-2018-327), and Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences (No. IAGM2022D08).

Author information

Authors and Affiliations

Authors

Contributions

HS: wrote the original draft, revised the manuscript, and conducted investigation. HY (corresponding author): conceptualization, project administration, and framework of the manuscript. XY: provided some ideas and discussions. XW: provided some ideas and discussions. HJ: provided some ideas and discussions. YT: provided some ideas and discussions. JH: provided some ideas and discussions. All authors have reviewed the manuscript and agreed to publish it.

Corresponding authors

Correspondence to Haitao Yang or Xiaohua Yu.

Ethics declarations

Ethical approval

This article does not involve any biological experiments.

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Yang, H., Yu, X. et al. Research progress of industrial application of membrane electrolysis technology. Ionics 30, 1223–1243 (2024). https://doi.org/10.1007/s11581-024-05395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05395-7

Keywords

Navigation