Skip to main content
Log in

Electrochemical biosensing: from interaction between Epilobium species and DNA to an approach to detect new electroactive components in plant extracts and their effects on DNA

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Here, a simple and label-free biosensor based on disposable pencil graphite electrode (PGE) was developed for the first time to investigate the interaction between Epilobium sp. plant extract containing active compounds (quercetin and kaempferol) and DNA using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The solution of extract was interacted with calf thymus double-stranded DNA (dsDNA) which immobilized onto the biosensor surface by simple adsorption. The effect of Epilobium on double-stranded DNA (dsDNA) was then analyzed by monitoring the changes in electrochemical signals arising from both guanine bases in DNA and the electroactive compounds in Epilobium extract. Epilobium content was also detected by using HPLC/MS/MS technique, and the gained results were compared with those obtained by electrochemical method. It was found that both methodologies supported each other in terms of active ingredients in Epilobium sp. Numerous factors affecting the extract-DNA interaction were optimized such as Epilobium concentration, interaction time. The developed DNA sensor can well detect Epilobium extract-DNA interaction in 60-min detection time with 26 ng of detection limit in 50 μL of sample volume with a linear range from 1 to 10 μg/mL. This study includes alternative method that can be used to detect new electroactive components present or to be found in different plant extracts and their interactions with DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cinti S, Proietti E, Casotto F et al (2018) Paper-based strips for the electrochemical detection of single and double stranded DNA. Anal Chem 90:13680–13686. https://doi.org/10.1021/acs.analchem.8b04052

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed MU, Hossain MM, Tamiya E (2008) Electrochemical biosensors for medical and food applications. Electroanalysis 20:616–626. https://doi.org/10.1002/elan.200704121

    Article  CAS  Google Scholar 

  3. Erdem A, Ozsoz M (2002) Electrochemical DNA biosensors based on DNA-drug interactions. Electroanalysis 14:965–974. https://doi.org/10.1002/1521-4109(200208)14:14<965::AID-ELAN965>3.0.CO;2-U

    Article  CAS  Google Scholar 

  4. Rauf S, Gooding JJ, Akhtar K et al (2005) Electrochemical approach of anticancer drugs-DNA interaction. J Pharm Biomed Anal 37:205–217. https://doi.org/10.1016/j.jpba.2004.10.037

    Article  CAS  PubMed  Google Scholar 

  5. Ozkan D, Karadeniz H, Erdem A et al (2004) Electrochemical genosensor for mitomycin C-DNA interaction based on guanine signal. J Pharm Biomed Anal 35:905–912. https://doi.org/10.1016/j.jpba.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Xia L-Y, Tang Y-N, Zhang J et al (2022) Advances in the DNA nanotechnology for the cancer biomarkers analysis: attributes and applications. Semin Cancer Biol 86:1105–1119. https://doi.org/10.1016/j.semcancer.2021.12.012

    Article  CAS  PubMed  Google Scholar 

  7. Lim SA, Ahmed MU (2016) A simple DNA-based electrochemical biosensor for highly sensitive detection of ciprofloxacin using disposable graphene. Anal Sci 32:687–693. https://doi.org/10.2116/analsci.32.687

    Article  CAS  PubMed  Google Scholar 

  8. Sinden RR (1994) DNA structure and function. Gulf Professional Publishing

    Google Scholar 

  9. Minunni M, Tombelli S, Mascini M et al (2005) An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening. Talanta 65:578–585. https://doi.org/10.1016/j.talanta.2004.07.020

    Article  CAS  PubMed  Google Scholar 

  10. Findik M, Bingol H, Erdem A (2021) Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sensors Actuators, B Chem 329:129120. https://doi.org/10.1016/j.snb.2020.129120

    Article  CAS  Google Scholar 

  11. Mehlhorn A, Rahimi P, Joseph Y (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors 8:54. https://doi.org/10.3390/bios8020054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abnous K, Danesh NM, Alibolandi M et al (2014) A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Toxicol Appl Pharmacol 280:100–106. https://doi.org/10.1016/j.snb.2016.08.100

    Article  CAS  Google Scholar 

  13. Gilani AH (2005) Trends in ethnopharmacology. J Ethnopharmacol 100:43–49

    Article  PubMed  Google Scholar 

  14. Vogel HG (2002) Drug discovery and evaluation: pharmacological assays. Springer Science & Business Media

    Book  Google Scholar 

  15. Tan AC, Konczak I, Sze DM-Y, Ramzan I (2010) Towards the discovery of novel phytochemicals for disease prevention from native Australian plants: an ethnobotanical approach. Asia Pac J Clin Nutr 19:330–334

    PubMed  Google Scholar 

  16. Gürağaç Dereli FT, Ilhan M, Sobarzo-Sánchez E, Küpeli Akkol E (2020) The investigation of the potential antidepressant-like activity of Xanthium orientale subsp. italicum (Moretti) Greuter in rodents. J Ethnopharmacol 258:112914. https://doi.org/10.1016/j.jep.2020.112914

    Article  CAS  PubMed  Google Scholar 

  17. Saller R, Meier R, Brignoli R (2001) The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063

    Article  CAS  PubMed  Google Scholar 

  18. Şahin MM, Cayonu M, Dinc SK et al (2022) Effects of chitosan and platelet-rich plasma on facial nerve regeneration in an animal model. Eur Arch Oto-Rhino-Laryngology 279:987–994. https://doi.org/10.1007/s00405-021-06859-6

    Article  Google Scholar 

  19. Kosman VM, Shikov AN, Pozharitskaya ON et al (2013) Variation of chemical composition of Epilobium angustifolium during fermentation. Planta Med 79:PJ42

    Article  Google Scholar 

  20. Vogl S, Picker P, Mihaly-Bison J et al (2013) Ethnopharmacological in vitro studies on Austria’s folk medicine—an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J Ethnopharmacol 149:750–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barakat HH, Hussein SAM, Marzouk MS et al (1997) Polyphenolic metabolites of Epilobium hirsutum. Phytochemistry 46:935–941

    Article  CAS  Google Scholar 

  22. Shikov AN, Poltanov EA, Dorman HJD et al (2006) Chemical composition and in vitro antioxidant evaluation of commercial water-soluble willow herb (Epilobium angustifolium L.) extracts. J Agric Food Chem 54:3617–3624

    Article  CAS  PubMed  Google Scholar 

  23. Schepetkin IA, Ramstead AG, Kirpotina LN et al (2016) Therapeutic potential of polyphenols from Epilobium angustifolium (Fireweed). Phyther Res 30:1287–1297

    Article  CAS  Google Scholar 

  24. Kosalec I, Kopjar N, Kremer D (2013) Antimicrobial activity of willowherb (Epilobium angustifolium L.) leaves and flowers. Curr Drug Targets 14:986–991

    Article  CAS  PubMed  Google Scholar 

  25. Dacrema M, Sommella E, Santarcangelo C et al (2020) Metabolic profiling, in vitro bioaccessibility and in vivo bioavailability of a commercial bioactive Epilobium angustifolium L. extract. Biomed Pharmacother 131:110670. https://doi.org/10.1016/j.biopha.2020.110670

    Article  CAS  PubMed  Google Scholar 

  26. Ruszová E, Cheel J, Pávek S et al (2013) Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. 32:347–359. https://doi.org/10.4149/gpb

  27. Singh AK, Verma N (2015) Industrial biotechnology. De Gruyter

    Google Scholar 

  28. Cardoso AR, Carneiro LPT, Cabral-Miranda G et al (2021) Employing bacteria machinery for antibiotic detection: using DNA gyrase for ciprofloxacin detection. Chem Eng J 409:128135. https://doi.org/10.1016/j.cej.2020.128135

    Article  CAS  Google Scholar 

  29. Bollella P, Fusco G, Tortolini C et al (2017) Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens Bioelectron 89:152–166

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira-Brett AM, Diculescu VC (2004) Electrochemical study of quercetin-DNA interactions: Part I Analysis in incubated solutions. Bioelectrochemistry 64:133–141. https://doi.org/10.1016/j.bioelechem.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Ensafi AA, Heydari-Soureshjani E, Jafari-Asl M et al (2015) Experimental and theoretical investigation effect of flavonols antioxidants on DNA damage. Anal Chim Acta 887:82–91. https://doi.org/10.1016/j.aca.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  32. Labuda J, Bucková M, Heilerová L et al (2003) Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal Bioanal Chem 376:168–173. https://doi.org/10.1007/s00216-003-1884-3

    Article  CAS  PubMed  Google Scholar 

  33. Szczepaniak O, Ligaj M, Stuper-Szablewska K, Kobus-Cisowska J (2022) Genoprotective effect of cornelian cherry (Cornus mas L.) phytochemicals, electrochemical and ab initio interaction study. Biomed Pharmacother 152:113216. https://doi.org/10.1016/j.biopha.2022.113216

    Article  CAS  PubMed  Google Scholar 

  34. Önem AN, Sözgen Başkan K, Apak R (2023) Voltammetric measurement of antioxidant activity by prevention of Cu(II)-induced oxidative damage on DNA bases using a modified electrodE. ACS Omega 8:5103–5115. https://doi.org/10.1021/acsomega.2c08055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alipour E, Norouzi S, Moradi S (2021) The development of an electrochemical DNA biosensor based on quercetin as a new electroactive indicator for DNA hybridization detection. Anal Methods 13:719–729

    Article  CAS  PubMed  Google Scholar 

  36. Can A, Ozdemir B, Gok B et al (2020) International Journal of Biological Macromolecules Synthesis , characterization , biological activities and molecular docking of Epilobium parvi fl orum aqueous extract loaded chitosan nanoparticles. Int J Biol Macromol 161:947–957. https://doi.org/10.1016/j.ijbiomac.2020.06.066

    Article  CAS  Google Scholar 

  37. Yanik S, Ozkan-ariksoysal D, Yilmaz S (2020) Electrochemical Biosensor for BRCA1 gene And Tamoxifen. Interaction 4:35–48

    Google Scholar 

  38. Talay P, Allahverdiyeva S, Yardım Y, Şentürk Z (2020) Voltammetric sensing of dinitrophenolic herbicide dinoterb on cathodically pretreated boron-doped diamond electrode in the presence of cationic surfactant. Microchem J 155:104772. https://doi.org/10.1016/j.microc.2020.104772

    Article  CAS  Google Scholar 

  39. Allahverdiyeva S, Keskin E, Pınar PT et al (2020) Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode. Diam Relat Mater 108:107962. https://doi.org/10.1016/j.diamond.2020.107962

    Article  ADS  CAS  Google Scholar 

  40. Allahverdiyeva S, Yunusoğlu O, Yardım Y, Şentürk Z (2021) First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: a study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal Chim Acta 1159:338418. https://doi.org/10.1016/j.aca.2021.338418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brett AMO, Ghica ME (2003) Electrochemical oxidation of quercetin. Electroanalysis 15:1745–1750. https://doi.org/10.1002/elan.200302800

    Article  CAS  Google Scholar 

  42. Zielińska D, Nagels L, Piskuła MK (2008) Determination of quercetin and its glucosides in onion by electrochemical methods. Anal Chim Acta 617:22–31. https://doi.org/10.1016/j.aca.2008.01.037

    Article  CAS  PubMed  Google Scholar 

  43. Allahverdiyeva S, Yardım Y, Şentürk Z (2021) Electrooxidation of tetracycline antibiotic demeclocycline at unmodified boron-doped diamond electrode and its enhancement determination in surfactant-containing media. Talanta 223:121695. https://doi.org/10.1016/j.talanta.2020.121695

    Article  CAS  PubMed  Google Scholar 

  44. Engin C, Yilmaz S, Saglikoglu G et al (2015) Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry. Int J Electrochem Sci 10:1916–1925

    Article  Google Scholar 

  45. Allahverdiyeva S, Talay Pınar P, Yardım Y, Şentürk Z (2021) First report for the electrochemical investigation of a new HIV integrase inhibitor dolutegravir: Its voltammetric determination in tablet dosage forms and human urine using a boron-doped diamond electrode. Diam Relat Mater 114:108332. https://doi.org/10.1016/j.diamond.2021.108332

    Article  ADS  CAS  Google Scholar 

  46. Ali HS, Abdullah AA, Pınar PT et al (2017) Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron-doped diamond electrode: its comparison with HPLC-DAD. Talanta 170:384–391. https://doi.org/10.1016/j.talanta.2017.04.037

    Article  CAS  PubMed  Google Scholar 

  47. Dolatabadi JEN (2011) Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int J Biol Macromol 48:227–233. https://doi.org/10.1016/j.ijbiomac.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  48. Devi KP, Malar DS, Nabavi SF et al (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10

    Article  CAS  PubMed  Google Scholar 

  49. Standing CT (2020) Kaempferol as a dietary anti-inflammatory agent. Molecules 25:1–12

    Google Scholar 

  50. Value C (2022) Quercetin : a molecule of great biochemical and clinical value. Diseases 10:37

    Article  Google Scholar 

  51. Velayutham P, Babu A, Liu D, Gilbert ER (2013) ScienceDirect Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24:1777–1789. https://doi.org/10.1016/j.jnutbio.2013.06.003

    Article  CAS  Google Scholar 

  52. Sokolová R, Ramešová Š, Degano I et al (2012) The oxidation of natural flavonoid quercetin. Chem Commun 48:3433–3435. https://doi.org/10.1039/c2cc18018a

    Article  CAS  Google Scholar 

  53. Erlund I, Kosonen T, Alfthan G et al (2000) Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 56:545–553. https://doi.org/10.1007/s002280000197

    Article  CAS  PubMed  Google Scholar 

  54. Zhang K, Song G, Li Y et al (2014) Voltammetric studies of kaempferol on polyvinyl pyrrolidone cladding quantum dots CdS doped carbon paste electrode and analytical application. Sensors Actuators, B Chem 191:673–680. https://doi.org/10.1016/j.snb.2013.10.051

    Article  CAS  Google Scholar 

  55. Congur G, Eksin E, Erdem A (2021) Levan modified DNA biosensor for voltammetric detection of daunorubicin-DNA interaction. Sensors Actuators, B Chem 326:128818. https://doi.org/10.1016/j.snb.2020.128818

    Article  CAS  Google Scholar 

  56. Subak H, Selvolini G, Macchiagodena M et al (2021) Mycotoxins aptasensing: from molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry 138:107691. https://doi.org/10.1016/j.bioelechem.2020.107691

    Article  CAS  PubMed  Google Scholar 

  57. Selvolini G, Băjan I, Hosu O et al (2018) DNA-based sensor for the detection of an organophosphorus pesticide: Profenofos. Sensors 18:2035–2046. https://doi.org/10.3390/s18072035

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Subak H (2022) Electrochemical biosensor for simultaneously detection of tamoxifen. MANAS J Eng 10:165–170

    Article  Google Scholar 

  59. Janjua NK, Siddiq A, Yaqub A et al (2009) Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochim Acta - Part A Mol Biomol Spectrosc 74:1135–1137. https://doi.org/10.1016/j.saa.2009.09.022

    Article  ADS  CAS  Google Scholar 

  60. Solimani R (1997) The flavonols quercetin, rutin and morin in DNA solution: UV-vis dichroic (and mid-infrared) analysis explain the possible association between the biopolymer and a nucleophilic vegetable-dye. Biochim Biophys Acta - Gen Subj 1336:281–294. https://doi.org/10.1016/S0304-4165(97)00038-X

    Article  CAS  Google Scholar 

  61. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  62. Bagni G, Osella D, Sturchio E, Mascini M (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal Chim Acta 573–574:81–89. https://doi.org/10.1016/j.aca.2006.03.085

    Article  CAS  PubMed  Google Scholar 

  63. Mocak J, Bond AM, Mitchell S, Scollary G (1997) A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem 69:297–328. https://doi.org/10.1351/pac199769020297

    Article  CAS  Google Scholar 

  64. Miller JN, Miller JC (2011) Instructor ’ s manual statistics and chemometrics for analytical chemistry

Download references

Funding

This work was supported by the Scientific Research Projects Coordination Department of Van Yüzüncü Yıl University (Project no: TSA-2019-8330).

Author information

Authors and Affiliations

Authors

Contributions

Hasret Subak: review methodology, data curation, writing—original draft preparation, reviewing, and editing.

Muzaffer Mukemre and Abdullah Dalar: plant analysis, ethnobotanical analysis, also data curation, reviewing, and editing.

Dilsat Ozkan-Ariksoysal: conceptualization, review methodology, investigation, supervision, writing—reviewing and editing.

Corresponding authors

Correspondence to Hasret Subak or Dilsat Ozkan-Ariksoysal.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subak, H., Dalar, A., Mukemre, M. et al. Electrochemical biosensing: from interaction between Epilobium species and DNA to an approach to detect new electroactive components in plant extracts and their effects on DNA. Ionics 30, 1759–1771 (2024). https://doi.org/10.1007/s11581-023-05356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05356-6

Keywords

Navigation