Skip to main content
Log in

Nitro-functionalized Fe-MOFs for lithium-sulfur batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Energy storage by means of lithium-sulfur batteries holds great promise. They are inexpensive and have a high potential energy density. Unfortunately, the battery’s cycling performance is greatly diminished by the shuttle effect of polysulfide. Metal–organic frameworks (MOFs) with high specific surface area, nanopore size, and plentiful porosity have been proven to help prevent polysulfide migration in recent years. In this research, partially nitro-functionalized MIL-101(Fe) has been produced by combining different proportion ligands. As an electron-withdrawing group, the nitro group can reduce the charge density of the metal sites and improve the adsorption capacity of the material to polysulfides. MIL-101-NO2-0.25 showed the performance with an initial discharge capacity of 1051.5 mAh g−1 at a current density of 0.5 C and maintained at 908 mAh g−1 after 250 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zhao Q, Yang S, Wang H, Zhang H, Qiao X (2023) N-doped porous carbon decorated with Fe2O3 via catalyzing polysulfide for high-performance lithium-sulfur batteries. Ionics 29:1013–1018

    CAS  Google Scholar 

  2. Chong YL, Zhao DD, Wang B, Feng L, Li SJ, Shao LX, Tong X, Du X, Cheng H, Zhuang JL (2022) Metal-organic frameworks functionalized separators for lithium-sulfur batteries. Chem Rec 22:e202200142

    CAS  PubMed  Google Scholar 

  3. Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng DL (2022) Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv Sci (Weinh) 9:e2106004

    PubMed  Google Scholar 

  4. Sun J, Zhang K, Fu Y, Guo W (2022) Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Res 16:3814–3822

  5. Kong X, Kong Y, He L, Zhang W, Song Y, Liu S, Zhao Y (2022) A new ether-based medium-concentrated electrolyte for lithium–sulfur battery with lean Li anode. J Power Sources 551:232211

    CAS  Google Scholar 

  6. Hou Z, Wang P-F, Sun X, Li W, Sheng C, He P (2022) Protecting Li metal anode while suppressing “shuttle effect” of Li-S battery through localized high-concentration Electrolyte. J Electron Mater 51:4772–4779

    ADS  CAS  Google Scholar 

  7. Gamo H, Hikima K, Matsuda A (2022) Understanding decomposition of electrolytes in all-solid-state lithium–sulfur batteries. Chem Mater 34:10952–10963

    CAS  Google Scholar 

  8. Sun M, Wang X, Li Y, Zhao Z, Qiu J (2022) Integration of desulfurization and lithium–sulfur batteries enabled by amino-functionalized porous carbon nanofibers. Energy Environ Mater 6:e12349

    Google Scholar 

  9. Shi H, Su P, Dong C, Liu J, Wu ZS (2022) Atomic Fe−N doped multi-cavity hollow carbon nanoreactor as an efficient electrocatalyst for lithium-sulfur batteries. Batter Supercaps 5:e202200154

    CAS  Google Scholar 

  10. Xu G, Li R, Li M, Zhang Q, Li B, Guo J, Wang X, Yang C, Yu Y (2022) Rapid internal conversion harvested in Co/Mo dichalcogenides hollow nanocages of polysulfides for stable lithium-sulfur batteries. Chem Eng J 434:134498

    CAS  Google Scholar 

  11. Cheng Q, Pan Z, Rao H, Zhong X (2022) Free-standing 3D nitrogen-doped graphene/Co4N aerogels with ultrahigh sulfur loading for high volumetric energy density Li-S batteries. J Alloy Compd 901:163625

    CAS  Google Scholar 

  12. Kiai MS, Mansoor M, Ponnada S, Gorle DB, Aslfattahi N, Sharma RK (2022) Integration of PDAAQ and non-stoichiometric MgO as host cathode materials for lithium-sulfur batteries with superior cycle stability: density functional theory calculations and experimental validations. Energy Fuels 36:15199–15209

    CAS  Google Scholar 

  13. Li X, Lu Y, Hou Z, Zhang W, Zhu Y, Qian Y, Liang J, Qian Y (2016) SnS2- compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. ACS Appl Mater Interfaces 8:19550–19557

    CAS  PubMed  Google Scholar 

  14. Wang R, Wu R, Yan X, Liu D, Guo P, Li W, Pan H (2022) Implanting single zn atoms coupled with metallic co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv Func Mater 32:2004239

    Google Scholar 

  15. Xu S, Kwok CY, Zhou L, Zhang Z, Kochetkov I, Nazar LF (2020) A high capacity all solid-state li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture. Adv Func Mater 31:22004239

    Google Scholar 

  16. Nakamura N, Ahn S, Momma T, Osaka T (2023) Future potential for lithium-sulfur batteries. J Power Sources 558:232566

    CAS  Google Scholar 

  17. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506

    ADS  CAS  PubMed  Google Scholar 

  18. Han Z, Li S, Wu Y, Yu C, Cheng S, Xie J (2021) Challenges and key parameters in exploring the cyclability limitation of practical lithium–sulfur batteries. J Mater Chem A 9:24215–24240

    CAS  Google Scholar 

  19. Weret MA, Su WN, Hwang BJ (2022) Strategies towards high performance lithium-sulfur batteries. Batter Supercaps 5:e202200059

    CAS  Google Scholar 

  20. Al Khazraji MR, Wang J, Wei S (2022) Recent progress of anode protection in Li–S Batteries. Energ Technol 11:202200944

    Google Scholar 

  21. Zhang F, Zhou Y, Zhang Y, Li D, Huang Z (2020) Facile synthesis of sulfur@titanium carbide Mxene as high performance cathode for lithium-sulfur batteries. Nanophotonics 9:2025–2032

    CAS  Google Scholar 

  22. Chen H, Xiao Y, Chen C, Yang J, Gao C, Chen Y, Wu J, Shen Y, Zhang W, Li S, Huo F, Zheng B (2019) Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl Mater Interfaces 11:11459–11465

    CAS  PubMed  Google Scholar 

  23. Bai S, Zhu K, Wu S, Wang Y, Yi J, Ishida M, Zhou H (2016) A long-life lithium–sulphur battery by integrating zinc–organic framework based separator. J Mater Chem A 4:16812–16817

    CAS  Google Scholar 

  24. Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium-Schwefel-Batterien: Elektrochemie, Materialien und Perspektiven. Angew Chem 125:13426–13441

    ADS  Google Scholar 

  25. Zhou C, He Q, Li Z, Meng J, Hong X, Li Y, Zhao Y, Xu X, Mai L (2020) A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem Eng J 395:124979

    CAS  Google Scholar 

  26. Bai S, Liu X, Zhu K, Wu S, Zhou H (2016) Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy 1:19763

    Google Scholar 

  27. Wang S, Wang Z, Chen F, Peng B, Xu J, Li J, Lv Y, Kang Q, Xia A, Ma L (2023) Electrocatalysts in lithium-sulfur batteries. Nano Res 4:12274

    Google Scholar 

  28. Wang Z, Huang W, Hua J, Wang Y, Yi H, Zhao W, Zhao Q, Jia H, Fei B, Pan F (2020) An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Methods 4:202000082

    Google Scholar 

  29. Fan L, Deng N, Yan J, Li Z, Kang W, Cheng B (2019) The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. Chem Eng J 369:874–897

    CAS  Google Scholar 

  30. Wang H, Zhang W, Xu J, Guo Z (2018) Advances in polar materials for lithium–sulfur batteries. Adv Func Mater 28:1707520

    Google Scholar 

  31. Ponnada S, Mansoor M, Aslfattahi N, Baydogan N, Naskar S, Sharma RK, Kiai MS (2023) Sustainable metal-organic framework co-engineered glass fiber separators for safer and longer cycle life of Li-S batteries. J Alloy Compd 941:168962

    CAS  Google Scholar 

  32. Yang T, Yu D, Wang D, Yang T, Li Z, Wu M, Petru M, Crittenden J (2021) Accelerating Fe(III)/Fe(II) cycle via Fe(II) substitution for enhancing Fenton-like performance of Fe-MOFs. Appl Catal B: Environ 286:119859

    CAS  Google Scholar 

  33. Yang B, Ding L, Yao H, Chen Y, Shi J (2020) A metal-organic framework (MOF) fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv Mater 32:e1907152

    PubMed  Google Scholar 

  34. Yu H, Bi M, Zhang C, Zhang T, Zhang X, Liu H, Mi J, Shen X, Yao S (2022) Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries. Electrochim Acta 428:140908

    CAS  Google Scholar 

  35. Pan Z, Brett DJL, He G, Parkin IP (2022) Progress and perspectives of organosulfur for lithium-sulfur batteries. Adv Energy Mater 12:2103483

    CAS  Google Scholar 

  36. Xue Z, Liu K, Liu Q, Li Y, Li M, Su CY, Ogiwara N, Kobayashi H, Kitagawa H, Liu M, Li G (2019) Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat Commun 10:5048

    ADS  PubMed  PubMed Central  Google Scholar 

  37. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L, Hu W, Zhao H, Tang Z (2016) Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80

    ADS  CAS  PubMed  Google Scholar 

  38. Khan NA, Kang IJ, Seok HY, Jhung SH (2011) Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem Eng J 166:1152–1157

    CAS  Google Scholar 

  39. Surble S, Serre C, Mellot-Draznieks C, Millange F, Ferey G (2006) A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem Commun (Camb) 3:284–286

  40. Zhang Q, Liu J-B, Chen L, Xiao C-X, Chen P, Shen S, Guo J-K, Au C-T, Yin S-F (2020) An etching and re-growth method for the synthesis of bismuth ferrite/MIL-53(Fe) nanocomposite as efficient photocatalyst for selective oxidation of aromatic alcohols. Appl Catal B: Environ 264:118529

    CAS  Google Scholar 

  41. Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA (2013) Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal 298:61–69

    CAS  Google Scholar 

  42. Zhou N, Tan J, Li X, Wang L, Jin C, Chen M, Yu Z, Liang Y, Qiu Z, Li W, Dong Y, Xie Z, Lin Y, Qu D, Zhang C (2020) Fabrication of Z-scheme Bi5O7I/MIL-53(Fe) hybrid with improved photocatalytic performance under visible light irradiation. J Mater Sci: Mater Electron 31:4822–4835

    CAS  Google Scholar 

  43. Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C (2020) Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nanomicro Lett 12:184

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun J, Wan J, Wang Y, Yan Z, Ma Y, Ding S, Tang M, Xie Y (2022) Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole: Design, degradation pathways, and mechanism. J Hazard Mater 429:128299

    CAS  PubMed  Google Scholar 

  45. Peng L, Zhang M, Zheng L, Yuan Q, Yu Z, Shen J, Chang Y, Wang Y, Li A (2022) Regulated Li2S deposition toward rapid kinetics Li-S batteries by a separator modified by CeO2-decorated porous carbon nanostructure. Small Methods 6:e2200332

    PubMed  Google Scholar 

  46. Zhu L, You L, Zhu P, Shen X, Yang L, Xiao K (2017) High performance lithium–sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator. ACS Sustain Chem Eng 6:248–257

    Google Scholar 

  47. Zou Y, Liu P, Yan Y, Chen S, Fan C, Xu R, Wang X, Zhong L, Yang R, Xu Y (2023) Effect of heteroatom in conductive polymer coating of cathode materials on electrochemical performance of lithium sulfur batteries. Ionics 29:1019–1028

    CAS  Google Scholar 

  48. Chang C-H, Chung S-H, Manthiram A (2015) Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes. J Mater Chem A 3:18829–18834

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Analytical & Testing Center of Tiangong University for the technical support in SEM measurements.

Funding

This work was supported by Natural Science Foundation of Tianjin City (No. 20JCYBJC00230).

Author information

Authors and Affiliations

Authors

Contributions

Yanli Ruan: conceptualization, supervision, writing——review and editing, and funding acquisition. Haoyu Cai: investigation, validation, software, formal analysis, and writing——original draft. Jinshuai Feng: assist with electrochemical testing. Haikuo Lei: aids in the preparation of modified separators. Haitao Zheng: validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanli Ruan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 498 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Cai, H., Feng, J. et al. Nitro-functionalized Fe-MOFs for lithium-sulfur batteries. Ionics 30, 769–778 (2024). https://doi.org/10.1007/s11581-023-05321-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05321-3

Keywords

Navigation