Skip to main content
Log in

Ionic and polaronic conduction in mixed ionic-electronic 98[20Li2O-xBi2O3-(80 − x)TeO2]-2Ag glass system

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ionic and polaronic conduction in mixed ionic electronic 98[20Li2O-xBi2O3-(80 − x)TeO2]-2Ag (x = 3, 5, 7, 11, 13, and 15 mol%) glasses had been analyzed with several theoretical models. The anomalous drop in logσDC for the investigated glass samples from x = 7 mol% to x = 11 mol% can be attributed to mixed ionic electronic effect (MIE) effect. The minimum in the MIE region is suggested to be due to a blocking effect on Li+ ion migration throughout the glass matrix. According to Almond-West formalism, the blocking Bi3+ ions to Li+ ions may induce high activation energy required for the formation of mobile carriers EC at x = 7 mol%, reducing the mobile Li+ ions available for ionic DC conductivity. Meanwhile, in ionic diffusion model, the blocking of Li+ ions may reduce the defect site concentration n at x = 11 mol% causing Li+ ions to migrate more slowly through the percolation channels. Anderson-Stuart activation energy EA analysis revealed that the accumulation of large BiO6 units in interstitial sites due to blocking effect may provide smaller size of interstitial openings for Li+ ions hence requiring high strain energy ES for ionic migration through the glass network. In addition, in the small polaron hopping model, the high number of BO units at x = 7 and 11 mol% may result in a decrease in density of states near Fermi level N(EF). The decrease in N(EF) may induce high activation energy W required for polaron hopping. Nonetheless, polaron hopping energy WH had a lower influence on total activation energy W than disordered energy WD, indicating that structural changes (BO/NBO formation) play a significant role in the polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. Souri D (2011) Effect of molybdenum trioxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44(4):717–721

    Article  Google Scholar 

  2. Sidkey MA, Gaafar MS (2004) Ultrasonic studies on the network structure of ternary TeO2–WO3–K2O glass system. Phys B: Condensed Matter 348(1–4):46–55

    Article  CAS  Google Scholar 

  3. Sidkey MA, El-Mallawany R, Nakhla RI, Abd El-Moneim A (1997) Ultrasonic attenuation at low temperature of TeO2–V2O5 glasses. Phys Status Solidi (a) 159(2):397–404

    Article  CAS  Google Scholar 

  4. Desirena H, Schülzgen A, Sabet S, Ramos-Ortiz G, De la Rosa E, Peyghambarian N (2009) Effect of alkali metal oxides R2O (R= Li, Na, K, Rb and Cs) and network intermediate MO (M= Zn, Mg, Ba and Pb) in tellurite glasses. Opt Mater 31(6):784–789

    Article  CAS  Google Scholar 

  5. Lin J, Huang W, Sun Z, Ray CS, Day DE (2004) Structure and non-linear optical performance of TeO2–Nb2O5–ZnO glasses. J Non-Cryst Solids 336(3):189–194

    Article  CAS  Google Scholar 

  6. El-Mallawany R, Abousehly A, Yousef E (2000) Elastic moduli of tricomponent tellurite glasses TeO2-V2O5-Ag2O. J Mater Sci Lett 19(5):409–411

    Article  Google Scholar 

  7. Al-Buriahi MS, Sayyed MI, Al-Hadeethi Y (2020) Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses. Ceram, Int

    Book  Google Scholar 

  8. Sen S, Ghosh A (1999) Multiphonon assisted hopping in strontium vanadate semiconducting glasses. J Phys Condens Matter 11(6):1529

    Article  CAS  Google Scholar 

  9. Mandal S, Ghosh A (1996) Electrical conduction in lead-iron glasses. J Phys Condens Matter 8(7):829

    Article  CAS  Google Scholar 

  10. Pach K, Golis E, Sitarz M, Filipecki J (2018) Structural studies of tellurite glasses doped with erbium ions. J Mol Struct 1164:328–333

    Article  CAS  Google Scholar 

  11. Saritha D, Markandeya Y, Salagram M, Vithal M, Singh AK, Bhikshamaiah G (2008) Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J Non-Cryst Solids 354(52–54):5573–5579

    Article  CAS  Google Scholar 

  12. Ram R, Bhattacharya S (2023) Mixed ionic-electronic transport in Na2O doped glassy electrolytes: promising candidate for new generation sodium ion battery electrolytes. J Appl Phys 133(14)

  13. Moguš-Milanković A, Šantić A, Ličina V, Day DE (2005) Dielectric behaviour and impedance spectroscopy of bismuth iron phosphate glasses. J Non-Cryst Solids 351(40–42):3235–3245

    Article  Google Scholar 

  14. Bih L, El Omari M, Réau JM, Haddad M, Boudlich D, Yacoubi A, Nadiri A (2000) Electronic and ionic conductivity of glasses inside the Li2O–MoO3–P2O5 system. Solid State Ion 132(1–2):71–85

    Article  CAS  Google Scholar 

  15. Dutta D, Ghosh A (2005) Dynamics of Ag+ ions in binary tellurite glasses. Phys Rev B 72(2):024201

    Article  Google Scholar 

  16. Ferreira Nascimento ML (2013) Determination of mobility and charge carriers concentration from ionic conductivity in sodium germanate glasses above and below. Int Sch Res Not 2013

  17. Sayer M, Mansingh A (1972) Transport properties of semiconducting phosphate glasses. Phys Rev B 6(12):4629

    Article  CAS  Google Scholar 

  18. Ibrahim AM, Elbashar YH, Badr AM, Elshaikh HA, Mostafa AG (2017) Mixed ionic–polaronic conduction in copper sodium phosphate glasses containing aluminium oxide. J Microw Power Electromagn Energy 51(1):71–89

    Google Scholar 

  19. Jayasinghe GDLK, Dissanayake MAKL, Bandaranayake PWSK, Souquet JL, Foscallo D (1999) Electronic to ionic conductivity of glasses in the Li2O–V2O5–TeO2 system. Solid State Ion 121(1–4):19–23

    Article  CAS  Google Scholar 

  20. Anderson OL, Stuart DA (1954) Calculation of activation energy of ionic conductivity in silica glasses by classical methods. J Am Ceram Soc 37(12):573–580

    Article  CAS  Google Scholar 

  21. Moawad HM, Jain H, El-Mallawany R (2009) DC conductivity of silver vanadium tellurite glasses. J Phys Chem Solids 70(1):224–233

    Article  CAS  Google Scholar 

  22. Holstein T (1959) Studies of polaron motion: part I. The molecular-crystal model. Ann Phys 8(3):325-342

  23. Lebrun N, Levy M, Souquet JL (1990) Electronic conductivity in glasses of the TeO2-V2O5-MoO3 system. Solid State Ionics 40:718–722

    Article  Google Scholar 

  24. Tanaka K, Yoko T, Nakano M, Nakamura M, Kamiya K (1990) Electronic conduction in Fe2O3-TeO2-P2O5 glasses: an explication for high conductivity of iron-containing tellurite glasses. J Non-Cryst Solids 125(3):264–271

    Article  CAS  Google Scholar 

  25. Chamuah A, Ojha S, Bhattacharya K, Ghosh CK, Bhattacharya S (2022) AC conductivity and electrical relaxation of a promising Ag2S-Ge-Te-Se chalcogenide glassy system. J Phys Chem Solids 166:110695

    Article  CAS  Google Scholar 

  26. Hisam R, Yahya AK, Mohamed Kamari H, Talib ZA (2017) AC conductivity and dielectric behavior in mixed electronic-ionic 30Li2O–4MoO3–(66–x) TeO2xV2O5 glass system. Ionics 23(6):1423–1437

    Article  CAS  Google Scholar 

  27. Rao PSG, Siripuram R, Sripada S (2019) Impedance analysis of TeO2-SeO2-Li2O nano glass system. Results Phys 13:102133

    Article  Google Scholar 

  28. Rani S, Sanghi S, Ahlawat N, Agarwal A (2014) Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J Alloy Compd 597:110–118

    Article  CAS  Google Scholar 

  29. Sutrisno MS, Samsudin NM, Sazali ES, Hisam R (2021) AC conductivity and dielectric properties of 98[20Li2O-xBi2O3-(80–x)TeO2]-2Ag mixed ionic-electronic glasses. J Mater Sci Mater Electron 32(4):5138–5155

    CAS  Google Scholar 

  30. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from ac conductivity data. J Mater Sci 19(10):3236–3248

    Article  CAS  Google Scholar 

  31. Almond DP, Duncan GK, West AR (1983) The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8(2):159–164

    Article  CAS  Google Scholar 

  32. Almond DP, West AR (1983) Mobile ion concentrations in solid electrolytes from an analysis of ac conductivity. Solid State Ionics 9:277–282

    Article  Google Scholar 

  33. Chatterjee A, Ghosh A (2018) Correlation between ion transport and network structure of Li2O-P2O5 glasses. Solid State Ionics 314:1–8

    Article  CAS  Google Scholar 

  34. Sutrisno MS, Sabri NS, Hisam R (2021) Effects of Bi2O3 on DC conductivity and nonlinear optical properties of mixed ionic–electronic 98[20Li2O-xBi2O3-(80–x)TeO2]-2Ag glass system. Appl Phys A 127(10):1–14

    Article  Google Scholar 

  35. Elliott RJ, Perondi L, Barrio RA (1994) Ionic conduction in (1–x)B2O3+ xLi2O. J Non-Cryst Solids 168(1–2):167–178

    Article  CAS  Google Scholar 

  36. Ojovan MI (2021) The modified random network (MRN) model within the configuron percolation theory (CPT) of glass transition. Ceramics 4(2):121–134

    Article  CAS  Google Scholar 

  37. Swenson J, Matic A, Karlsson C, Börjesson L, Meneghini C, Howells WS (2001) Random ion distribution model: a structural approach to the mixed-alkali effect in glasses. Phys Rev B 63(13):132202

    Article  Google Scholar 

  38. Kahnt H (1996) Ionic transport in glasses. J Non-Cryst Solids 203:225–231

    Article  CAS  Google Scholar 

  39. Nascimento MLF (2007) Test of the Anderson-Stuart model and correlation between free volume and the ‘universal’ conductivity in sodium silicate glasses. J Mater Sci 42(11):3841–3850

    Article  CAS  Google Scholar 

  40. Coon J, Shelby JE (1990) Properties and structure of lead halosilicate glasses. J Am Ceram Soc 73(2):379–382

    Article  CAS  Google Scholar 

  41. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1(1):1–17

    Article  CAS  Google Scholar 

  42. Mott NF, Davis EA (2012) Electronic processes in non-crystalline materials. Oxford University Press

    Google Scholar 

  43. Schirmer OF, Wittwer V, Baur G, Brandt G (1977) Dependence of WO 3 electrochromic absorption on crystallinity. J Electrochem Soc 124(5):749

    Article  CAS  Google Scholar 

  44. Guo C, Yin S, Dong Q, Sato T (2012) Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm 14(22):7727–7732

    Article  CAS  Google Scholar 

  45. Zhou Y, Li N, Xin Y, Cao X, Ji S, Jin P (2017) CsxWO3 nanoparticle-based organic polymer transparent foils: low haze, high near infrared-shielding ability and excellent photochromic stability. J Mater Chem C 5(25):6251–6258

    Article  CAS  Google Scholar 

  46. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18(71):41–102

    Article  CAS  Google Scholar 

  47. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492

    Article  CAS  Google Scholar 

  48. Schirmer OF (1976) Optical absorption of small polarons bound in octahedral symmetry: V-type centers in alkaline earth oxides. Zeitschrift für Physik B Condensed Matter 24(3):235–244

    CAS  Google Scholar 

  49. Punia R, Kundu RS, Murugavel S, Kishore N (2012) Hopping conduction in bismuth modified zinc vanadate glasses: an applicability of Mott’s model. J Appl Phys 112(11):113716

    Article  Google Scholar 

  50. Shaltout I, Tang YI, Braunstein R, Shaisha EE (1996) FTIR spectra and some optical properties of tungstate-tellurite glasses. J Phys Chem Solids 57(9):1223–1230

    Article  CAS  Google Scholar 

  51. Elkholy MM, El-Mallawany RA (1995) Ac conductivity of tellurite glasses. Mater Chem Phys 40(3):163–167

    Article  CAS  Google Scholar 

  52. Emin D, Seager CH, Quinn RK (1972) Small-polaron hopping motion in some chalcogenide glasses. Phys Rev Lett 28(13):813

    Article  CAS  Google Scholar 

  53. Kumar MP, Sankarappa T (2009) DC conductivity of rare earth ions doped vanado-tellurite glasses. J Non-Cryst Solids 355(4–5):295–300

    Article  Google Scholar 

  54. Nagaraja N, Sankarappa T, Kumar MP (2008) Electrical conductivity studies in single and mixed alkali doped cobalt–borate glasses. J Non-Cryst Solids 354(14):1503–1508

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Research Management Centre (RMC), Universiti Teknologi MARA, for assistance throughout the research. This study was funded by Ministry of Higher Education through Fundamental Research Grant Scheme (FRGS) with code FRGS/1/2018/STG02/UITM/02/9.

Funding

This research was financially supported by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS), FRGS/1/2018/STG02/UITM/02/9. The funding source had no role in the study design, data collection, analysis, interpretation, writing of the manuscript, or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors have significantly contributed to this research and manuscript. MSS: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, validation, visualization, writing—original draft, writing—review and editing. RH: funding acquisition, investigation, supervision, validation, writing—review and editing. All authors have reviewed and approved the final version of this manuscript.

Corresponding author

Correspondence to R. Hisam.

Ethics declarations

Ethical approval

The research presented in this manuscript has been conducted in strict adherence to ethical guidelines and principles.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutrisno, M.S., Hisam, R. Ionic and polaronic conduction in mixed ionic-electronic 98[20Li2O-xBi2O3-(80 − x)TeO2]-2Ag glass system. Ionics 30, 271–283 (2024). https://doi.org/10.1007/s11581-023-05301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05301-7

Keywords

Navigation