Skip to main content
Log in

Defect engineering of MOF toward enhanced electrocatalytic water oxidation

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrochemical water splitting for the hydrogen production is now widely considered as a prominent technology to alleviate the energy crisis, due to its green, high efficiency, and low energy consumption. However, the slow kinetic rate of anodic oxygen evolution (OER) has hindered its further development. Therefore, it is of great significance to develop low cost and non-precious catalysts. Metal-organic framework materials (MOFs) are widely considered appropriate candidates for serving as OER catalysts because of their diverse composition, abundant pores, high specific surface area, and well-defined metal centers. However, MOFs usually suffer from the disadvantages of low electrical conductivity and slow mass transfer. To overcome these shortcomings, we herein propose a facile defect engineering strategy to obtain a class of advanced MOF-based OER electrocatalysts, where the NiFe-MIL-D@NF with abundant surface defects is demonstrated to be highly active toward OER, delivering a current density of 100 mA·cm−2 with the overpotential of merely 394 mV, along with outstanding electrochemical stability. This work reports a facile defect engineering strategy towards the modification of MOF-based electrocatalysts, which will guide the further development of more advanced OER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher. The corresponding author declares that all the data and materials are available.

References

  1. Xu H, Zhao Y, Wang Q, He G, Chen H (2022) Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 451:214261

    Article  CAS  Google Scholar 

  2. Xu H, Zhao Y, He G, Chen H (2022) Race on engineering noble metal single-atom electrocatalysts for water splitting. Int J Hydrog Energy 47(31):14257–14279

    Article  CAS  Google Scholar 

  3. Liu Z, Yu X, Xue H, Feng L (2019) A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. J Mater Chem A 7(21):13242–13248

    Article  CAS  Google Scholar 

  4. Li D, Liu H, Feng L (2020) A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuel 34(11):13491–13522

    Article  CAS  Google Scholar 

  5. Tian L, Liu Y, He C, Tang S, Li J, Li Z (2023) Hollow heterostructured nanocatalysts for boosting electrocatalytic water splitting. Chem Rec 23(2):e202200213

    Article  CAS  PubMed  Google Scholar 

  6. Lu X, Wang T, Cao M, Cheng W, Yang H, Xu H, He C, Tian L, Li Z (2023) Homogeneous NiMoO4–Co(OH)2 bifunctional heterostructures for electrocatalytic oxygen evolution and urea oxidation reaction. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.04.257

  7. Lu X, Du M, Wang T, Cheng W, Li J, He C, Li Z, Tian L (2023) Ultrafast fabrication of nanospherical CoFe alloys for boosting electrocatalytic water oxidation. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.05.105

  8. Xu H, Yuan J, He G, Chen H (2023) Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 475:214869

    Article  CAS  Google Scholar 

  9. Tian L, Huang Z, Lu X, Wang T, Cheng W, Yang H, Huang T, Li T, Li Z (2023) Plasmon-mediated oxidase-like activity on Ag@ZnS heterostructured hollow nanowires for rapid visual detection of nitrite. Inorg Chem 62:1659–1666

    Article  CAS  PubMed  Google Scholar 

  10. Chu X, Wang K, Qian W, Xu H (2023) Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 477:214952

    Article  CAS  Google Scholar 

  11. Chu X, Wang L, Li J, Xu H (2023) Strategies for promoting catalytic performance of Ru-based electrocatalysts towards oxygen/hydrogen evolution reaction. Chem Rec 23:e202300013

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Wang C, Huang B, Shang H, Du Y (2023) Dual-cation doping precisely reducing the energy barrier of the rate-determining step for promoting oxygen-evolving activity. Inorg Chem Front 10(7):2067–2074

    Article  CAS  Google Scholar 

  13. Xu H, Jin L, Wang K, Yang L, He G, Chen H (2023) Carbon nanocages confined multicomponent phosphide heterostructures for boosting oxygen evolution reaction in alkaline water and seawater. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.05.254

  14. Xu H, Wang C, He G, Chen H, Du Y (2022) Hierarchical hollow CoWO4-Co(OH)2 heterostructured nanoboxes enabling efficient water oxidation electrocatalysis. Inorg Chem 61(35):14224–14232

    Article  CAS  PubMed  Google Scholar 

  15. He Q, Hu H, Shao Y, Tang D, Zhao Z (2022) Constructing 3D hierarchical MOFs nanospheres for oxygen evolution from high-throughput calculations. J Colloid Interface Sci 607(Pt 2):1944–1952

    Article  CAS  PubMed  Google Scholar 

  16. Xiao L, Wang Z, Guan J (2022) 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coord Chem Rev 472:214777

    Article  CAS  Google Scholar 

  17. Lu XF, Fang Y, Luan D, Lou XWD (2021) Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett 21(4):1555–1565

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Y, Yue K, Xia C, Zaman S, Yang H, Wang X, Yan Y, Xia BY (2021) Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano Lett 13(1):137

    Article  CAS  Google Scholar 

  19. Xiao X, Zou L, Pang H, Xu Q (2020) Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 49(1):301–331

    Article  CAS  PubMed  Google Scholar 

  20. Thangavel P, Lee H, Kong TH, Kwon S, Tayyebi A, Lee JH, Choi SM, Kwon Y (2022) Immobilizing low-cost metal nitrides in electrochemically reconstructed platinum group metal (PGM)-free oxy-(hydroxides) surface for exceptional OER kinetics in anion exchange membrane water electrolysis. Adv Energy Mater 13(6):2203401

    Article  Google Scholar 

  21. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987

    Article  CAS  PubMed  Google Scholar 

  22. Thangavel P, Ha M, Kumaraguru S, Meena A, Singh AN, Harzandi AM, Kim KS (2020) Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy Environ Sci 13(10):3447–3458

    Article  CAS  Google Scholar 

  23. Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Lang JP (2019) Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed 58(21):7051–7056

    Article  CAS  Google Scholar 

  24. Li FL, Shao Q, Huang X, Lang JP (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 57(7):1888–1892

    Article  CAS  Google Scholar 

  25. Dutta S, Indra A, Feng Y, Song T, Paik U (2017) Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Appl Mater Interfaces 9(39):33766–33774

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Han GQ, Liu YR, Dong B, Hu WH, Shang X, Chai YM, Liu CG (2016) NiSe@NiOOH core-shell hyacinth-like nanostructures on nickel foam synthesized by in situ electrochemical oxidation as an efficient electrocatalyst for the oxygen evolution reaction. ACS Appl Mater Interfaces 8(31):20057–20066

    Article  CAS  PubMed  Google Scholar 

  27. Tang C, Cheng N, Pu Z, Xing W, Sun X (2015) NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed 54(32):9351–9355

    Article  CAS  Google Scholar 

  28. Xu H, Yang L, Wang K, Jin L, Liu Y, He G, Chen H (2023) Etched high-entropy prussian blue analogues as trifunctional catalysts for water, ethanol, and urea electrooxidation. Inorg Chem 62:11271–11277

    Article  CAS  PubMed  Google Scholar 

  29. Tian L, Pang X, Xu H, Liu D, Lu X, Li J, Wang J, Li Z (2022) Cation-anion dual doping modifying electronic structure of hollow CoP nanoboxes for enhanced water oxidation electrocatalysis. Inorg Chem 61(42):16944–16951

    Article  CAS  PubMed  Google Scholar 

  30. Xu H, Li J, Chu X (2023) Intensifying hydrogen spillover for boosting electrocatalytic hydrogen evolution reaction. Chem Rec 23(3):e202200244

    Article  CAS  PubMed  Google Scholar 

  31. Xu H, Li J, Chu X (2023) Interfacial built-in electric-field for boosting energy conversion electrocatalysis. Nanoscale Horiz 8(4):441–452

    Article  CAS  PubMed  Google Scholar 

  32. Bu L, Ning F, Zhou J, Zhan C, Sun M, Li L, Zhu Y, Hu Z, Shao Q, Zhou X, Huang B, Huang X (2022) Three-dimensional porous platinum-tellurium-rhodium surface/interface achieve remarkable practical fuel cell catalysis, Energy. Environ Sci 15:3877–3890

    CAS  Google Scholar 

  33. Wang M, Wang M, Zhan C, Geng H, Li Y, Huang X, Bu L (2022) Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J Mater Chem A 10(36):18972–18977

    Article  CAS  Google Scholar 

  34. Xu H, Wang K, He G, Chen H (2023) Concurrent alloying and vacancy engineering for intensifying hydrogen spillover towards alcohol–water co-electrolysis. J Mater Chem A 11(33):17609–17615

    Article  CAS  Google Scholar 

  35. Xu H, Wang K, Jin L, Yang L, Yuan J, Zhang W, He G, Chen H (2023) Synergistically engineering of vacancy and doping in thiospinel to boost electrocatalytic oxygen evolution in alkaline water and seawater. J Colloid Interface Sci 650(Pt B):1500–1508

    Article  CAS  PubMed  Google Scholar 

  36. Kundu A, Kuila T, Murmu NC, Samanta P, Das S (2023) Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Mater Horiz 10(3):745–787

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Wang J, Jiang K, Xiao Z, Gao Y, Lin S, Chen B (2022) Self-reconstructed metal-organic framework heterojunction for switchable oxygen evolution reaction. Angew Chem Int Ed 61(51):e202214794

    Article  CAS  Google Scholar 

  38. Madhu R, Sankar SS, Karthick K, Karmakar A, Kumaravel S, Kundu S (2021) Electrospun cobalt-incorporated MOF-5 microfibers as a promising electrocatalyst for OER in alkaline media. Inorg Chem 60(13):9899–9911

    Article  CAS  PubMed  Google Scholar 

  39. Guo Y, Huang Q, Ding J, Zhong L, Li T-T, Pan J, Hu Y, Qian J, Huang S (2021) CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. Int J Hydrog Energy 46(43):22268–22276

    Article  CAS  Google Scholar 

  40. Chen H, Yu Z, Hou Y, Jiang R, Huang J, Tang W, Cao Z, Yang B, Liu C, Song H (2021) Double MOF gradually activated S bond induced S defect rich MILN-based Co(z)-NiMoS for efficient electrocatalytic overall water splitting. Nanoscale 13(48):20670–20682

    Article  CAS  PubMed  Google Scholar 

  41. Hou CC, Zou L, Wang Y, Xu Q (2020) MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew Chem Int Ed 59(48):21360–21366

    Article  CAS  Google Scholar 

  42. Wang HF, Chen L, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49(5):1414–1448

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the start-up funding to H. Xu by Changzhou University (ZMF22020055), Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University for financial support, Changzhou University College Students Innovation and Entrepreneurship Training Program (QZX23020158, QZX23020211). We also thanked the Analysis and Testing Center of Changzhou University for the assistance in characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Kun Wang: conceptualization, methodology, formal analysis, investigation, and writing. Jian Kang: conceptualization, methodology, formal analysis, and investigation. Lei Jin, Lida Yang, and Yang Liu: resources, data curation, and investigation. Yahan Li and Guanyu Chen: data curation and formal analysis. Hui Xu: writing, review, editing, and project administration.

Corresponding author

Correspondence to Hui Xu.

Ethics declarations

Ethical approval

This work is not applicable to both human and/or animal studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Kang, J., Jin, L. et al. Defect engineering of MOF toward enhanced electrocatalytic water oxidation. Ionics 29, 5397–5403 (2023). https://doi.org/10.1007/s11581-023-05213-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05213-6

Keywords

Navigation