Skip to main content
Log in

Steady-state interface construction of high-voltage nickel-rich lithium-ion battery cathodes by low-content LixCoO2 surface modification engineering

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The nickel-rich layered ternary cathode material has gained widespread interest for its high theoretical specific capacity. However, the inferior charge/discharge cycle, because of increased side reactions at high cut-off voltages, severely limits its application in industrial applications. Improving the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by forming a protective layer without changing the structural characteristics of the electrode material itself is considered to be the most effective method. In this work, we constructed a LixCoO2 crystalline cladding layer through an extremely effortless and very easy-to-industrialize method. These coating materials significantly improved the cycling stability of NCM811 at 4.8 V ultra-high cut-off voltage. Results of characterization showed that after 100 cycles at 1 C (2.8–4.8 V), the 1.0 wt% modified NCM811 and pristine NCM811 show a retention of 77% and 53%, respectively. This is attributable to the fact that the coating material can effectively mitigate the interfacial side reactions to protect the active electrode material, further enhance the kinetic transport properties of Li+ across the interface, and reduce the degradation of the bulk structure. Based on these results, we think that the LixCoO2 crystalline cladding layer is a useful way to very significantly elevate the properties of nickel-rich lithium metal oxide electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    CAS  PubMed  Google Scholar 

  2. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013

    CAS  Google Scholar 

  3. Cheng X-B, Zhang R, Zhao C-Z, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    CAS  PubMed  Google Scholar 

  4. Su D, Pei Y, Liu L, Liu Z, Liu J, Yang M, Wen J, Dai J, Deng H, Cao G (2021) Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nanomicro Lett 13(1):107

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xia J, Liu L, Jamil S, Xie J, Yan H, Yuan Y, Zhang Y, Nie S, Pan J, Wang X, Cao G (2019) Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries. Energy Storage Materials 17:1–11

    Google Scholar 

  6. Cho Y, Oh P, Cho J (2013) A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett 13(3):1145–1152

    CAS  PubMed  Google Scholar 

  7. Li X, Jin L, Song D, Zhang H, Shi X, Wang Z, Zhang L, Zhu L (2020) LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 40:39–45

    Google Scholar 

  8. Yang X, Tang Y, Shang G, Wu J, Lai Y, Li J, Qu Y, Zhang Z (2019) Enhanced cyclability and high-rate capability of LiNi0.88Co0.095Mn0.025O2 cathodes by homogeneous Al3+ doping. ACS Appl Mater Interface 11(35):32015–32024

    CAS  Google Scholar 

  9. Li W, Erickson EM, Manthiram A (2020) High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 5(1):26–34

    CAS  Google Scholar 

  10. Liu W, Oh P, Liu X, Lee M-J, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54(15):4440–4457

    CAS  Google Scholar 

  11. Zhao Z, Wen Z, Li C, Ding Y, Jiang Y, Wu F, Wu B, Chen S, Mu D (2020) Effects of different charge cut-off voltages on the surface structure and electrochemical properties of LiNi0.6Co0.2Mn0.2O2. Electrochimica Acta 353

  12. Nam KW, Bak SM, Hu EY, Yu XQ, Zhou YN, Wang XJ, Wu LJ, Zhu YM, Chung KY, Yang XQ (2013) Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv Func Mater 23(8):1047–1063

    CAS  Google Scholar 

  13. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Source 343:345–353

    CAS  Google Scholar 

  14. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D (2016) Review-recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164(1):A6220–A6228

    Google Scholar 

  15. Yoon M, Dong Y, Hwang J, Sung J, Cha H, Ahn K, Huang Y, Kang SJ, Li J, Cho J (2021) Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy 6(4):362–371

    CAS  Google Scholar 

  16. Wang W, Wu L, Li Z, Huang K, Chen Z, Lv C, Dou H, Zhang X (2021) Stabilization of a 4.7|V high-voltage nickel-rich layered oxide cathode for lithium-ion batteries through boron-based surface residual lithium-tuned interface modification engineering. ChemElectroChem 8(11):2014–2021

    CAS  Google Scholar 

  17. Okumura K, Aihara Y, Ito S, Kawasaki S (2000) Development of thermal spraying-sintering technology for solid oxide fuel cells. J Therm Spray Technol 9(3):354–359

    CAS  Google Scholar 

  18. Yan WW, Yang SY, Huang YY, Yang Y, Yuan GH (2020) A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. J Alloys Compd 819

  19. MalekiKheimeh Sari H, Li X (2019) Controllable cathode–electrolyte interface of Li[Ni08Co01Mn01]O2 for lithium ion batteries: a review. Adv Energy Mater 9(39):1901597

    CAS  Google Scholar 

  20. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14(2):230–238

    CAS  PubMed  Google Scholar 

  21. Lee G-H, Lau VW-H, Yang W, Kang Y-M (2021) Utilizing oxygen redox in layered cathode materials from multiscale perspective. Adv Energy Mater 11(27):2003227

    CAS  Google Scholar 

  22. Zuo W, Luo M, Liu X, Wu J, Liu H, Li J, Winter M, Fu R, Yang W, Yang Y (2020) Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ Sci 13(12):4450–4497

    CAS  Google Scholar 

  23. Huang J, Zhong P, Ha Y, Kwon D-H, Crafton MJ, Tian Y, Balasubramanian M, McCloskey BD, Yang W, Ceder G (2021) Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat Energy 6(7):706–714

    CAS  Google Scholar 

  24. Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7(1):12108

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gent WE, Lim K, Liang Y, Li Q, Barnes T, Ahn S-J, Stone KH, McIntire M, Hong J, Song JH, Li Y, Mehta A, Ermon S, Tyliszczak T, Kilcoyne D, Vine D, Park J-H, Doo S-K, Toney MF, Yang W, Prendergast D, Chueh WC (2017) Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat Commun 8(1):2091

    PubMed  PubMed Central  Google Scholar 

  26. Hua W, Wang S, Knapp M, Leake SJ, Senyshyn A, Richter C, Yavuz M, Binder JR, Grey CP, Ehrenberg H, Indris S, Schwarz B (2019) Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun 10(1):5365

    PubMed  PubMed Central  Google Scholar 

  27. Sharifi-Asl S, Yurkiv V, Gutierrez A, Cheng M, Balasubramanian M, Mashayek F, Croy J, Shahbazian-Yassar R (2020) Revealing grain-boundary-induced degradation mechanisms in Li-rich cathode materials. Nano Lett 20(2):1208–1217

    CAS  PubMed  Google Scholar 

  28. Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, Liu Y-S, Edström K, Guo J, Chadwick AV, Duda LC, Bruce PG (2016) Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat Chem 8(7):684–691

    CAS  PubMed  Google Scholar 

  29. Yang J, Li P, Zhong F, Feng X, Chen W, Ai X, Yang H, Xia D, Cao Y (2020) Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv Energy Mater 10(15):1904264

    CAS  Google Scholar 

  30. Liu H, Du C, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2014) An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J Mater Chem A 2(37):15640–15646

    CAS  Google Scholar 

  31. Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S, Lin Z (2020) Accurate control of initial Coulombic efficiency for lithium-rich manganese-based layered oxides by surface multicomponent integration. Angew Chem Int Ed 59(51):23061–23066

    CAS  Google Scholar 

  32. Lee J, Zhang Q, Kim J, Dupre N, Avdeev M, Jeong M, Yoon W-S, Gu L, Kang B (2020) Controlled atomic solubility in Mn-rich composite material to achieve superior electrochemical performance for Li-ion batteries. Adv Energy Mater 10(5):1902231

    CAS  Google Scholar 

  33. Wu J, Zhu H, Yu H, Wang Z, Jiang H, Li C (2022) Enhancing surface and crystal stability of the Ni-high NCA cathode for high-energy and durable lithium-ion batteries. Ind Eng Chem Res 61(7):2817–2824

    CAS  Google Scholar 

  34. Wei J, Liang D, Ji Y, Chen B, Jiang C, Li X (2022) Enhanced electrochemical performance of cobalt oxide layers coated LiNi0.8Co0.1Mn0.1O2 by polyvinylpyrrolidone-assisted method cathode for Li-ion batteries. J Colloid Interface Sci 616:520–531

    CAS  PubMed  Google Scholar 

  35. Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3(10):1299–1307

    CAS  Google Scholar 

  36. Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S (2013) Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 25(27):3722–3726

    CAS  PubMed  Google Scholar 

  37. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed 54(44):13058–13062

    CAS  Google Scholar 

  38. Zhao T, Li L, Chen R, Wu H, Zhang X, Chen S, Xie M, Wu F, Lu J, Amine K (2015) Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15:164–176

    CAS  Google Scholar 

  39. Park SC, Kim YM, Kang YM, Kim KT, Lee PS, Lee JY (2001) Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2. J Power Source 103(1):86–92

    CAS  Google Scholar 

  40. Liu W, Hu G, Du K, Peng Z, Cao Y (2013) Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2. J Power Source 230:201–206

    CAS  Google Scholar 

  41. Son JT, Cairns EJ (2007) Characterization of LiCoO2 coated Li1.05Ni0.35Co0.25Mn04O2 cathode material for lithium secondary cells. J Power Source 166(2):343–347

    CAS  Google Scholar 

  42. Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi08Co01Mn01O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl Mater Interface 9(35):29732–29743

    CAS  Google Scholar 

  43. Liu Y, Tang LB, Wei HX, Zhang XH, He ZJ, Li YJ, Zheng JC (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    CAS  Google Scholar 

  44. Wang L, Liu G, Ding X, Zhan C, Wang X (2019) Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries. ACS Appl Mater Interface 11(37):33901–33912

    CAS  Google Scholar 

  45. Chen J, Zou G, Deng W, Huang Z, Gao X, Liu C, Yin S, Liu H, Deng X, Tian Y, Li J, Wang C, Wang D, Wu H, Yang L, Hou H, Ji X (2020) Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv Func Mater 30(46):2004302

    CAS  Google Scholar 

  46. Han CJ, Eom WS, Lee SM, Cho WI, Jang H (2005) Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol-gel method. J Power Source 144(1):214–219

    CAS  Google Scholar 

  47. Ran Q, Zhao H, Hu Y, Shen Q, Liu W, Liu J, Shu X, Zhang M, Liu S, Tan M, Li H, Liu X (2018) Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochimica Acta 289:82–93

    CAS  Google Scholar 

  48. Qiu H, Wang Y, Ye S (2018) Rationally-directed synthesis and characterization of nickel-rich cathode material for lithium ion battery. Energ Technol 6(12):2419–2428

    CAS  Google Scholar 

  49. Yun S, Wang X, Xu D (2008) Influence of processing parameters on the structure and properties of barium strontium titanate ceramics. Mater Res Bull 43(8):1989–1995

    CAS  Google Scholar 

  50. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8(6):1702028

    Google Scholar 

  51. Zhu Z, Gao A, Liang Y, Yi F, Meng T, Ling J, Hao J, Shu D (2022) Dual-functional tungsten boosted Lithium-ion diffusion and structural integrity of LiNi08Co01Mn01O2 cathodes for high performance lithium-ion batteries. ACS Sustain Chem Eng 10(1):50–60

    CAS  Google Scholar 

  52. Yin SC, Rho YH, Swainson I, Nazar LF (2006) X-ray/neutron diffraction and electrochemical studies of lithium de/re-intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1). Chem Mater 18(7):1901–1910

    CAS  Google Scholar 

  53. Du K, Xie H, Hu G, Peng Z, Cao Y, Yu F (2016) Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3. ACS Appl Mater Interface 8(27):17713–17720

    CAS  Google Scholar 

  54. Peng Z, Wang G, Cao Y, Zhang Z, Du K, Hu G (2016) Enhanced high power and long life performance of spinel LiMn2O4 with Li2MnO3 coating for lithium-ion batteries. J Solid State Electrochem 20(10):2865–2871

    CAS  Google Scholar 

  55. Li J, Zhao J, Tang C, Jia T, Hou J, Cao C, Zhu Y (2021) Mitigating voltage decay of Li-rich layer oxide cathode material via an ultrathin “lithium ion pump” heteroepitaxial surface modification. J Power Sources 511(1):230427

    CAS  Google Scholar 

  56. Chen Z, Kim GT, Guang Y, Bresser D, Diemant T, Huang Y, Copley M, Behm RJ, Passerini S, Shen Z (2018) Manganese phosphate coated Li[Ni0.6Co0.2Mn0.2]O2 cathode material: towards superior cycling stability at elevated temperature and high voltage. J Power Source 402:263–271

    CAS  Google Scholar 

  57. Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compounds 674:447–454

    CAS  Google Scholar 

  58. Ryu HH, Park KY, Yoon CS, Sun YK (2018) Capacity fading of Ni-rich Li[NixCoyMn1 − x – y]O2 (0.6 ≤ x ≤ 095) cathodes for high-energy-density lithium-ion batteries bulk or surface degradation. Chem Mater 30(3):1155–1163

    CAS  Google Scholar 

  59. Park KJ, Jung HG, Kuo LY, Kaghazchi P, Yoon CS, Sun YK (2018) Improved cycling stability of Li[Ni090Co005Mn005]O2 through microstructure modification by boron doping for Li-ion batteries. Adv Energy Mater 8(25):1801202

    Google Scholar 

  60. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    CAS  Google Scholar 

  61. Heubner C, Schneider M, Michaelis A (2015) Investigation of charge transfer kinetics of Li-intercalation in LiFePO4. J Power Source 288:115–120

    CAS  Google Scholar 

  62. Lee SW, Kim MS, Jeong JH, Kim DH, Chung KY, Roh KC, Kim KB (2017) Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance. J Power Sources 360:206–214

    CAS  Google Scholar 

  63. Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Source 256:20–27

    CAS  Google Scholar 

  64. Zhang H, Li B, Wang J, Wu B, Fu T, Zhao J (2016) Effects of Li2MnO3 coating on the high-voltage electrochemical performance and stability of Ni-rich layer cathode materials for lithium-ion batteries. RSC Adv 6(27):22625–22632

    CAS  Google Scholar 

  65. Dong Y, Su P, He G, Zhao H, Bai Y (2021) Constructing compatible interface between Li7La3Zr2O12 solid electrolyte and LiCoO2 cathode for stable cycling performances at 4.5 V. Nanoscale 13(16):7822–7830

    CAS  PubMed  Google Scholar 

  66. Xu Y-D, Xiang W, Wu Z-G, Xu C-L, Li Y-C, Guo X-D, Lv G-P, Peng X, Zhong B-H (2018) Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochimica Acta 268:358–365

    CAS  Google Scholar 

  67. Kim DW, Park D, Ko CH, Shin K, Lee Y-S (2021) Improving electrochemical performance of Ni-rich cathode using atomic layer deposition with particle by particle coating method. J Electrochem Sci Technol 12(2):237–245

    CAS  Google Scholar 

  68. Gan Z, Hu G, Peng Z, Cao Y, Tong H, Du K (2019) Surface modification of LiNi0.8Co0.1Mn0.1O2 by WO3 as a cathode material for LIB. Appl Surface Sci 481:1228–1238

    CAS  Google Scholar 

  69. Zhang B, Dong P, Tong H, Yao Y, Zheng J, Yu W, Zhang J, Chu D (2017) Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 with lithium-reactive Li3VO4 coating. J Alloys Compounds 706:198–204

    CAS  Google Scholar 

  70. Du M, Yang P, He W, Bie S, Zhao H, Yin J, Zou Z, Liu J (2019) Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3. J Alloys Compounds 805:991–998

    CAS  Google Scholar 

  71. Yang J, Hou M, Haller S, Wang Y, Wang C, Xia Y (2016) Improving the cycling performance of the layered Ni-rich oxide cathode by introducing low-content Li2MnO3. Electrochim Acta 189:101–110

    CAS  Google Scholar 

  72. Zhang X, Hu G, Cao Y, Peng Z, Wang W, Tan C, Wang Y, Du K (2021) A facile in-situ coating strategy for Ni-rich cathode materials with improved electrochemical performance. Electrochim Acta 383:138297

    CAS  Google Scholar 

  73. Zhou J, Wang Q, Zhang M, Guo Y, Zhu A, Qiu X, Wu H, Chen X, Zhang Y (2020) In situ formed Li5AlO4-coated LiNi0·8Co0·1Mn0·1O2 cathode material assisted by hydrocarbonate with improved electrochemical performance for lithium-ion batteries. Electrochim Acta 353:136541

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China General Project (52272089, 51578448), National Natural Science Youth Fund Project (51308447), Shaanxi Province Outstanding Youth Science Foundation (2021JC-43), and Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant/Award Number: 20JY042).

Author information

Authors and Affiliations

Authors

Contributions

Xiaolin Ye and Jian Wei wrote the main manuscript text. Xinyu Qiao, Yuxuan Ji, and Bing Chen reviewed the manuscript.

Corresponding author

Correspondence to Jian Wei.

Ethics declarations

Ethical approval

No experiments about human or animals were conducted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Wei, J., Qiao, X. et al. Steady-state interface construction of high-voltage nickel-rich lithium-ion battery cathodes by low-content LixCoO2 surface modification engineering. Ionics 29, 3039–3053 (2023). https://doi.org/10.1007/s11581-023-05056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05056-1

Keywords

Navigation