Skip to main content
Log in

Reaction ball milling self-assembly derived micro/nano-Si flakes as the high tap density Si source for high-performance Si@C anode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Micro/nano-Si flakes were obtained by a facile approach of reaction ball milling self-assembly, and then, a Si@C anode material with a carbon content of 17.7wt% was synthesized by combining the Si flakes with phenol formaldehyde resin. It was revealed that the micro/nano-Si flakes inherited the advantages of both nano-Si and bulk Si, showing not only a considerable surface area of 65.6 m2 g−1 but also a high tap density of 0.66 g cm−3. The Si@C anode showed outstanding electrochemical performance, particularly its high volumetric capacity, due to the formation of dual-layer SiOx/C film on the micro/nano-Si. The Si@C anode delivered a gravimetric/volumetric capacity as high as 1721.9 mAh g−1/1239.8 mAh cm−3 at 0.05 A g−1 and preserved a large gravimetric/volumetric capacity of 1028.7 mAh g−1/740.7 mAh cm−3 at 2.0 A g−1. It retained 92.0% of its initial capacity after 200 cycles at 0.5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  2. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  3. Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4:540–550. https://doi.org/10.1038/s41560-019-0405-3

    Article  Google Scholar 

  4. Wei TT, Peng PP, Ji YR, Yan-Rong Zhu YR, Yi TF, Xie Y (2022) Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J Energy Chem 71:400–410. https://doi.org/10.1016/j.jechem.2022.04.017

    Article  CAS  Google Scholar 

  5. Yi TF, Mei J, Peng PP, Luo SH (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B-Eng 167:566–572. https://doi.org/10.1016/j.compositesb.2019.03.032

    Article  CAS  Google Scholar 

  6. Yi TF, Shi LN, Han X, Wang FF, Zhu YR, Xie Y (2021) Approaching high- performance lithium storage materials by constructing hierarchical CoNiO2@CeO2 nanosheets. Energy Environ Mater 4:586–595. https://doi.org/10.1002/eem2.12140

    Article  CAS  Google Scholar 

  7. Li XZ, Zhang N, Wu YR, Lai QZ, Zhu YR, Zhang JH, Cui P, Yi TF (2022) Interconnected Bi5Nb3O15@CNTs network as high-performance anode materials of Li-ion battery. Rare Met 41:3401–3411. https://doi.org/10.1007/s12598-022-02049-3

    Article  CAS  Google Scholar 

  8. McDowell MT, Lee SW, Nix WD, Cui Y (2013) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985. https://doi.org/10.1002/adma.201301795

    Article  CAS  PubMed  Google Scholar 

  9. Cui J, Chen X, Zhou Z, Zuo M, Xiao Y, Zhao N, Shi C, Guo X (2021) Effect of continuous pressures on electrochemical performance of Si anodes. Mater Today Energy 20:100632. https://doi.org/10.1016/j.mtener.2020.100632

    Article  CAS  Google Scholar 

  10. Chae S, Xu Y, Yi R, Lim HS, Velickovic D, Li X, Li Q, Wang C, Zhang JG (2021) A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv Mater 33:2103095. https://doi.org/10.1002/adma.202103095

    Article  CAS  Google Scholar 

  11. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531. https://doi.org/10.1021/nn204476h

    Article  CAS  PubMed  Google Scholar 

  12. Shao R, Niu J, Zhu F, Dou M, Zhang Z, Wang F (2019) A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: concomitant conductive network construction and dual-interfacial engineering. Nano Energy 63:103824. https://doi.org/10.1016/j.nanoen.2019.06.020

    Article  CAS  Google Scholar 

  13. Storan D, Ahad SA, Forde R, Kilian S, Adegoke TE, Kennedy T, Geaney H, Ryan KM (2022) Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Mater Today Energy 27:101030. https://doi.org/10.1016/j.mtener.2022.101030

    Article  CAS  Google Scholar 

  14. Park SH, King PJ, Tian R, Boland CS, Coelho J, Zhang C, McBean P, McEvoy N, Kremer MP, Daly D, Coleman JN, Nicolosi V (2019) High areal capacity battery electrodes enabled by segregated nanotube networks. Nat Energy 4:560–567. https://doi.org/10.1038/s41560-019-0398-y

    Article  CAS  Google Scholar 

  15. Ma J, Sung J, Lee Y, Son Y, Chae S, Kim N, Choi SH, Cho J (2020) Strategic pore architecture for accommodating volume change from high Si content in lithium-ion battery anode. Adv Energy Mater 10:1903400. https://doi.org/10.1002/aenm.201903400

    Article  CAS  Google Scholar 

  16. Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12:3315–3321. https://doi.org/10.1021/nl3014814

    Article  CAS  PubMed  Google Scholar 

  17. Liu N, Lu Z, Zhao J, McDowell MT, Lee H, Zhao W, Cui Y (2014) A pomegranate- inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192. https://doi.org/10.1038/NNANO.2014.6

    Article  CAS  PubMed  Google Scholar 

  18. Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG (2017) Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater 7:1601481. https://doi.org/10.1002/aenm.201601481

    Article  CAS  Google Scholar 

  19. Huang X, Cen DC, Wei R, Fan HL, Bao ZH (2019) Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high- performance anode for lithium-ion battery. ACS Appl Mater Interfaces 11:26854–26862. https://doi.org/10.1021/acsami.9b06976

    Article  CAS  PubMed  Google Scholar 

  20. Li JY, Li G, Zhang J, Yin Y, Yue FS, Xu Q, Guo YG (2019) Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl Mater Interfaces 11:4057–4064. https://doi.org/10.1021/acsami.8b20213

    Article  CAS  PubMed  Google Scholar 

  21. Lin D, Lu Z, Hsu PC, Lee HR, Liu N, Zhao J, Wang H, Liu C, Cui Y (2015) A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ Sci 8:2371–2376. https://doi.org/10.1039/c5ee01363a

    Article  CAS  Google Scholar 

  22. Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  23. Li G, Huang LB, Yan MY, Li JY, Jiang KC, Yin YX, Xin S, Xu Q, Guo YG (2020) An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 74:104890. https://doi.org/10.1016/j.nanoen.2020.104890

    Article  CAS  Google Scholar 

  24. Xu Q, Sun JK, Yin YX, Guo YG (2018) Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater 28:1705235. https://doi.org/10.1002/adfm.201705235

    Article  CAS  Google Scholar 

  25. Zhao L, He YB, Li CF, Jiang KL, Wang P, Ma JB, Xia HY, Chen FY, He YB, Chen Z, You CH, Kang FY (2019) Compact Si/C anodes fabricated by simultaneously regulating the size and oxidation degree of Si for Li-ion batteries. J Mater Chem A 7:24356–24365. https://doi.org/10.1039/c9ta09255b

    Article  CAS  Google Scholar 

  26. Shi JW, Gao HY, Hu GX, Zhang Q (2022) Interfacial self-assembled Si@SiOX@C microclusters with high tap density for high-performance Li-ion batteries. Mater Today Energy 29:101090. https://doi.org/10.1016/j.mtener.2022.101090

    Article  CAS  Google Scholar 

  27. Lin N, Han Y, Zhou J, Zhang KL, Xu TJ, Zhu YC, Qian YT (2015) A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries. Energy Environ Sci 8:3187–3191. https://doi.org/10.1039/c5ee02487k

    Article  CAS  Google Scholar 

  28. Robelin C, Chartrand P, Pelton AD (2004) Thermodynamic evaluation and optimization of the (NaCl+KCl+AlCl3) system. J Chem Thermodyn 36:683–699. https://doi.org/10.1016/j.jct.2004.04.011

    Article  CAS  Google Scholar 

  29. Song G, Ryu J, Kim JC, Lee JH, Kim S, Wang C, Kwak SK, Park S (2018) Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts. CommunChem 1:42. https://doi.org/10.1038/s42004-018-0041-z

    Article  CAS  Google Scholar 

  30. Li CJ, Li PW, Wang K, Molina EE (2014) Survey of properties of key single and mixture halide salts for potential application as high temperature heat transfer fluids for concentrated solar thermal power systems. AIMS Energy 2:133–157. https://doi.org/10.3934/energy.2014.2.133

    Article  Google Scholar 

  31. Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49:2146–2149. https://doi.org/10.1002/anie.200906287

    Article  CAS  Google Scholar 

  32. Erogbogbo F, Lin T, Tucciarone PM, LaJoie KM, Lai L, Patki GD, Prasad PN, Swihart MT (2013) On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. Nano Lett 13:451–456. https://doi.org/10.1021/nl304680w

    Article  CAS  PubMed  Google Scholar 

  33. Ning R, Jiang Y, Zeng YT, Gong HX, Zhao JH, Weisse J, Shi XJ, Gill TM, Zheng XL (2020) On-demand production of hydrogen by reacting porous silicon nanowires with water. Nano Res 13:1459–1464. https://doi.org/10.1007/s12274-020-2734-8

    Article  CAS  Google Scholar 

  34. Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Kwak DH, Choi SY, Son BG, Shin MS, Park KW (2016) 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 27:545–553. https://doi.org/10.1016/j.nanoen.2016.08.012

    Article  CAS  Google Scholar 

  35. Yi R, Dai F, Gordin ML, Sohn H, Wang D (2013) Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes. Adv Energy Mater 3:1507–1515. https://doi.org/10.1002/aenm.201300496

    Article  CAS  Google Scholar 

  36. Pradip P, Dhanraj S, Mainak M (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat Chem 8:718–724. https://doi.org/10.1038/NCHEM.2515

    Article  Google Scholar 

  37. Zhang YZ, Qin X, Liu Y, Chen YL, Lei CR, Wei TY (2022) Novel Si@C/P anode materials with improved cyclability and rate capacity for lithium-ion batteries. J Alloy Compd 899:163237. https://doi.org/10.1016/j.jallcom.2021.163237

    Article  CAS  Google Scholar 

  38. Kulnitskiy B, Annenkov M, Perezhogin I, Popov M, Ovsyannikova D, Blank V (2016) Mutual transformation between crystalline phases in silicon after treatment in a planetary mill: HRTEM studies. Acta Cryst B72:733–737. https://doi.org/10.1107/S2052520616011422

    Article  CAS  Google Scholar 

  39. Chen YY, Hu ZP, Xu YF, Wang JY, Schützendübe P, Huang Y, Liu YC, Wang ZM (2019) Microstructure evolution and interface structure of Al-40 wt% Si composites produced by high-energy ball milling. J Mater Sci Technol 35:512–519. https://doi.org/10.1016/j.jmst.2018.10.005

    Article  CAS  Google Scholar 

  40. Liu XY, Lu J, Jiang JL, Jiang Y, Gao Y, Li WR, Zhao B, Zhang JJ (2021) Enhancing lithium storage performance by strongly binding silicon nanoparticles sandwiching between spherical graphene. ApplSurfSci 539:148191. https://doi.org/10.1016/j.apsusc.2020.148191

    Article  CAS  Google Scholar 

  41. Zhou ZW, Liu YT, Xie XM, Ye XY (2016) Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage. Chem Commun 52:8401–8404. https://doi.org/10.1039/c6cc03766f

    Article  CAS  Google Scholar 

  42. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powers and porous solids: principles methodology and applications. Academic Press, San Diego

    Google Scholar 

  43. Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533. https://doi.org/10.1016/j.nanoen.2012.04.001

    Article  CAS  Google Scholar 

  44. Cao WY, Chen MX, Liu YF, Han K, Chen XF, Ye HQ, Sang SB (2019) C2H2O4 etching of AlSi alloy powder: an efficient and mild preparation approach for high performance micro-Si anode. Electrochim Acta 320:134615–134621. https://doi.org/10.1016/j.electacta.2019.134615

    Article  CAS  Google Scholar 

  45. Hou L, Xing BL, Zeng HH, Kang WW, Guo H, Cheng S, Huang GX, Cao YJ, Chen ZF, Zhang CX (2022) Aluminothermic reduction synthesis of Si/C composite nanosheets from waste vermiculite as high-performance anode materials for lithium-ion batteries. J Alloy Compd 922:166134. https://doi.org/10.1016/j.jallcom.2022.166134

    Article  CAS  Google Scholar 

  46. Mu TS, Lou SF, Holmes NG, Wang CH, He MX, Shen BC, Lin XT, Zuo PJ, Ma YL, Li RY, Du CY, Wang JJ, Yin GP, Sun XL (2021) Reversible silicon anodes with long cycles by multifunctional volumetric buffer layers. ACS Appl Mater Interfaces 13:4093–4101. https://doi.org/10.1021/acsami.0c21455

    Article  CAS  PubMed  Google Scholar 

  47. Cui JL, Cui YF, Li SH, Sun HL, Wen ZS, Sun JC (2016) Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:30239–30247. https://doi.org/10.1021/acsami.6b10260

    Article  CAS  PubMed  Google Scholar 

  48. Fox AM, Vrankovic D, Buchmeiser MR (2022) Influence of the silicon-carbon interface on the structure and electrochemical performance of a phenolic resin-derived Si@C core-shell nanocomposite-based anode. ACS Appl Mater Interfaces 14:761–770. https://doi.org/10.1021/acsami.1c18481

    Article  CAS  PubMed  Google Scholar 

  49. Berhaut CL, Dominguez DZ, Tomasi D, Vincens C, Haon CE, Reynier Y, Porcher W, Boudet N, Blanc N, Chahine GA, Tardif S, Pouget SE, Lyonnard S (2020) Prelithiation of silicon/graphite composite anodes: benefits and mechanisms for long-lasting Li-ion batteries. Energy Storage Mater 29:190–197. https://doi.org/10.1016/j.ensm.2020.04.008

    Article  Google Scholar 

  50. Yen YC, Chao SC, Wu HC, Wu NL (2009) Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells. J Electrochem Soc 156:A95–A102. https://doi.org/10.1149/1.3032230

    Article  CAS  Google Scholar 

  51. Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J (2008) The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid State Lett 11:A170–A174. https://doi.org/10.1149/1.2964220

    Article  CAS  Google Scholar 

  52. Barsoukov E, Kim JH, Kim JH, Yoon CO, Lee H (1998) Effect of low-temperature conditions on passive layer growth on Li intercalation materials in situ impedance study. J Electrochem Soc 145:2711–2717. https://doi.org/10.1149/1.1838703

    Article  CAS  Google Scholar 

  53. Hou XH, Zhang M, Wang JY, Hu SJ, Liu X, Shao ZP (2015) High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries. J Alloy Compd 639:27–35. https://doi.org/10.1016/j.jallcom.2015.03.127

    Article  CAS  Google Scholar 

  54. Shen DZ, Huang CF, Gan LH, Liu J, Gong ZL, Long MN (2018) Rational design of Si@SiO2/C composites using sustainable cellulose as a carbon resource for anodes in lithium-ion batteries. ACS Appl Mater Interfaces 10:7946–7954. https://doi.org/10.1021/acsami.7b16724

    Article  CAS  PubMed  Google Scholar 

  55. Shi WS, Wu HB, Baucom J, Li XY, Ma SX, Chen G, Lu YF (2020) Covalently bonded Si-polymer nanocomposites enabled by mechanochemical synthesis as durable anode materials. ACS Appl Mater Interfaces 12:39127–39134. https://doi.org/10.1021/acsami.0c09938

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are financially supported by the Foundational Research Funds of University Natural Science Research Project of Anhui Province in P. R. China (KJ2020A0268) and Natural Science Foundation of Anhui province in P. R. China (2008085ME125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daolai Fang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2398 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Liu, W., Yang, M. et al. Reaction ball milling self-assembly derived micro/nano-Si flakes as the high tap density Si source for high-performance Si@C anode materials. Ionics 29, 2611–2625 (2023). https://doi.org/10.1007/s11581-023-05052-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05052-5

Keywords

Navigation