Skip to main content
Log in

Physicochemical properties of the N-methyl-6-hydroxyquinolinium–based protic ionic liquids in the gas and solution media: M06–2X-GD3/6–311 +  + G(d,p) study

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The interesting biological activity of N-methyl-6-hydroxyquinolinium salts (6MQc) and their derivatives has made them promising pharmaceutical agents. In this research, the physicochemical properties of N-methyl-6-oxyquinolonium [6MQz]+–based ionic liquids (IL) [6MQc][Y1–6] (Y1–6 = CH3CO2, CF3CO2, NTf2, CF3SO3, BF4, and PF6) were calculated at M06–2X-GD3/6–311 +  + G(d,p) level of theory. It is proposed that the formation of [6MQz] in the [6MQc][Y1] IL makes it sensitively respond to pH variations. The results showed that the degree of association of ions decreases on going from a non-polar solvent to a polar one. Based on electrochemical window values, the studied ILs have no suitable electrochemical stability for use in electrochemical devices. The natural bond orbital (NBO) and atoms-in-molecules (AIM) population analyses were carried out to calculate the atomic charges and electron density properties as well as to characterize the nature of the hydrogen bonding interaction in ion pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1.
Fig. 6

Similar content being viewed by others

Data availability

Data is available by request.

References

  1. Shamsi SH, Danielson ND (2007) Utility of ionic liquids in analytical separations. J Sep Sci 30(11):1729–1750

  2. Greer AJ, Jacquemin J, Hardacre C (2020) Industrial applications of ionic liquids. Molecules 25:5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cui J, Li Y, Chen D, Zhan TG, Zhang KD (2020) Ionic liquid-based stimuli-responsive functional materials. Adv Func Mater 30(50):2005522

    Article  CAS  Google Scholar 

  4. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pimpalshende DM, Dhoble SJ (2014) Synthesis and characterization of diphenyl quinoline and bromine-activated diphenyl quinoline organic phosphors. Luminescence 29(5):451–455

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Z, Shi Y, Pan Y, Cheng X, Zhang L, Chen J, Li MJ, Yi C (2014) Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J Mater Chem B 2(31):5020

    Article  CAS  PubMed  Google Scholar 

  7. Cretton S, Breant L, Pourrez L, Ambuehl C, Marcourt L, NejadEbrahimi S, Hamburger M, Perozzo R, Karimou S, Kaiser M, Cuendet M, Christen P (2014) Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J Nat Prod 77(10):2304–2311

    Article  CAS  PubMed  Google Scholar 

  8. Barthelmes HU, Niederberger E, Roth T, Schulte K, Tang W-C, Boege F, Fieberg H-H, Eisenbrand G, Marko D (2001) Br J Cancer 85:1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maus D, Grandjean A, Jung G (2018) Toward magic photoacids: proton transfer in concentrated sulfuric acid. J Phys Chem A 122(46):9025–9030

    Article  CAS  PubMed  Google Scholar 

  10. Gould EA, Popov AV, Tolbert LM, Presiado I, Erez Y, Huppert D, Solntsev KM (2012) Excited-state proton transfer in N-methyl-6-hydroxyquinolinium salts: solvent and temperature effects. Phys Chem Chem Phys 14(25):8964–8973

    Article  CAS  PubMed  Google Scholar 

  11. Schmode S, Petrosyan A, Fennel F, Villinger A, Lochbrunner S, Ludwig R (2017) Large stokes shift ionic-liquid dye. Angew Chem Int Ed 56:8564–8567

    Article  CAS  Google Scholar 

  12. Gao L, Lin X, Zheng A, Shuang E, Wang J, Chen X (2020) Real-time monitoring of intracellular pH in live cells with fluorescent ionic liquid. Anal Chim Acta 1111:132–138 (and references cited therein)

    Article  CAS  PubMed  Google Scholar 

  13. Bruni F, Pedrini J, Bossio C, Santiago-Gonzalez B, Meinardi F, Bae WK, Brovelli S (2017) Two-color emitting colloidal nanocrystals as single-particle ratiometric probes of intracellular pH. Adv Func Mater 27(12):1605533

    Article  Google Scholar 

  14. Yang M, Jalloh AS, Wei W, Zhao J, Wu P, Chen PR (2014) Biocompatible click chemistry enabled compartment-specific pH measurement inside E coli. Nature Commun 5(1):1–10

    Article  Google Scholar 

  15. Chang MJ, Kim K, Park KS, Kang JS, Lim CS, Kim HM, Lee MH (2018) High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues. Chem Commun 54(96):13531–13534

    Article  CAS  Google Scholar 

  16. Ding C, Tian Y (2015) Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens Bioelectron 65:183–190

    Article  CAS  PubMed  Google Scholar 

  17. Zheng AQ, Wang N, Chen ML, Shu Y, Wang JH (2018) Probing pH variation in living cells and assaying hemoglobin in blood with nitrogen enriched carbon dots. Talanta 188:788–794

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–224

    Article  Google Scholar 

  19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 721:650–654

    Article  Google Scholar 

  20. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theor Comput 2:364–382

    Article  Google Scholar 

  21. Izgorodina EI, Bernard UL, MacFarlane DR (2009) Ion-pair binding energies of ionic liquids: can DFT compete with ab initio-based methods? J Phys Chem A 113:7064–7072

    Article  CAS  PubMed  Google Scholar 

  22. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. J Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  23. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    CAS  Google Scholar 

  24. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  25. Pascual-Ahuir JL, Silla E, Tunon I (1994) GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15:1127–1138

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  27. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital. Donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  28. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM2000–a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–560

    Google Scholar 

  29. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  30. Ozerov RP, Vorobyev AA (2007) Dielectric properties of substances. Physics for Chemists, pp 251–304

  31. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  PubMed  Google Scholar 

  32. Sun X, Liu S, Khan A, Zhao C, Yan C, Mu T (2014) Ionicity of acetate-based protic ionic liquids: evidence for both liquid and gaseous phases. New J Chem 38:3449–3456

    Article  CAS  Google Scholar 

  33. Sun X, Cao B, Zhou X, Liu S, Zhu X, Fu H (2016) Theoretical and experimental studies on proton transfer in acetate-based protic ionic liquid. J Mol Liq 221:254–261

    Article  CAS  Google Scholar 

  34. Dong K, Zhang S, Wang D, Yao X (2006) Hydrogen bonds in imidazolium ionic liquids. J Phys Chem A 110:9775–9782

    Article  CAS  PubMed  Google Scholar 

  35. Schulz T, Ahrens S, Meyer D, All olio C, Peritz A, Strassner T (2011) Electronic effects of para-substitution on the melting points of TAAILs. Chem Asian J 6(3):863–867

  36. Chaban V (2015) Hydrogen fluoride capture by imidazolium acetate ionic liquid. Chem Phys Lett 625:110–115

    Article  CAS  Google Scholar 

  37. Matthews RP, Ashworth C, Welton T, Hunt PA (2014) The impact of anion electronic structure: similarities and differences in imidazolium based ionic liquids. J Phys: Condens Matter 26:284112–284126

    PubMed  Google Scholar 

  38. Karu K, Ruzanov A, Ers H, Ivaništšev V, Lage-Estebanez I, GarcíadelaVega JM (2016) Predictions of physicochemical properties of ionic liquids with DFT. Computation 4:25–39

    Article  Google Scholar 

  39. Daily LA, Miller KM (2013) Correlating structure with thermal properties for a series of 1-alkyl-4-methyl-1, 2, 4-triazolium ionic liquids. J Org Chem 78:4196–4201

    Article  CAS  PubMed  Google Scholar 

  40. Nilsson-Hallén J, Ahlström B, Marczewski M, Johansson P (2019) Ionic liquids: a simple model to predict ion conductivity based on DFT derived physical parameters. Front Chem 7:126–131

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nazet A, Sokolov S, Sonnleitner T, Makino T, Kanakubo M, Buchner R (2015) Densities, viscosities, and conductivities of the imidazolium ionic liquids [Emim][Ac], [Emim][FAP], [Bmim][BETI], [Bmim][FSI], [Hmim][TFSI], and [Omim][TFSI]. J Chem Eng Data 60(8):2400–2411

    Article  CAS  Google Scholar 

  42. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  43. Ghatee MH, Moosavi F, Zolghadr AR, Jahromi R (2010) Critical-point temperature of ionic liquids from surface tension at liquid−vapor equilibrium and the correlation with the interaction energy. Ind Eng Chem Res 49:12696–12701

    Article  CAS  Google Scholar 

  44. Panic J, Tot A, Jankovi N, Drid P, Gadzuric S, Vranes M (2020) Physicochemical and structural properties of lidocaine-based ionic liquids with anti-inflammatory anions. RSC Adv 10:14089–14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  46. Gong L, Guo W, Xiong J, Li R, Wu X, Li W (2006) Structures and stability of ionic liquid model with imidazole and hydrogen fluorides chains: density functional theory study. Chem Phys Lett 425(1–3):167–178

    Article  CAS  Google Scholar 

  47. Roohi H, Khyrkhah S (2013) Ion-pairs formed in [Mim+][N(CN)2] ionic liquid: structures, binding energies, NMRSSCCs, volumetric, thermodynamic and topological properties. J Mol Liq 177:119–128

    Article  CAS  Google Scholar 

  48. Buijs W, Witkamp GJ, Kroon MC (2012) Correlation between quantum chemically calculated LUMO energies and the electro-chemical window of ionic liquids with reduction-resistant anions. Int J Electrochem 2012:589050–589056

  49. Kazemiabnavi S, Zhang ZC, Thornton K, Banerjee S (2016) Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 120:5691–5702

    Article  CAS  PubMed  Google Scholar 

  50. Koch VR, Dominey LA, Nanjundiah C (1996) The intrinsic anodic stability of several anions comprising solvent-free ionic liquids. J Electrochem Soc 143:798–803

    Article  CAS  Google Scholar 

  51. Ong SP, Andreussi O, Wu Y, Marzari N, Ceder G (2011) Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem Mater 23(11):2979–2986

    Article  CAS  Google Scholar 

  52. Ue M, Murakami A, Nakamurab S (2002) A convenient method to estimate ion size for electrolyte materials design. J Electrochem Soc 149(12):1572–1577

    Article  Google Scholar 

  53. Buzzeo MC, Hardacre Prof C, Compton Prof RG (2006) Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. Chem Phys Chem 7(1):176–180

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Roohi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, H., Hosseini, S. Physicochemical properties of the N-methyl-6-hydroxyquinolinium–based protic ionic liquids in the gas and solution media: M06–2X-GD3/6–311 +  + G(d,p) study. Ionics 29, 2377–2392 (2023). https://doi.org/10.1007/s11581-023-04970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04970-8

Keywords

Navigation