Skip to main content

Advertisement

Log in

Dye-sensitized solar cells based on nanocomposite gel polymer electrolytes incorporating modified-CuO nanorod prepared by varying sonication durations

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The nanofiller morphology plays an essential role on the efficiency of DSSCs. Copper oxide has been synthesized using sonochemical method to obtain a suitable nanofiller by altering the ultrasonication duration. The modified-CuO was incorporated into the gel polymer electrolytes formulated by poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (P(VB-co-VA-co-Vac)) and sodium iodide (NaI). The electrolytes with modified-CuO nanorod at different sonication durations have shown improvement in the photoconversion performance due to the enhanced ion diffusion and more percolation path for the redox couple mobility within the electrolyte system. Electrolytes prepared at 60 min sonication time exhibited the highest efficiency of 5.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Yun S, Freitas JN, Nogueira AF et al (2016) Dye-sensitized solar cells employing polymers. Prog Polym Sci 59:1–40. https://doi.org/10.1016/j.progpolymsci.2015.10.004

    Article  CAS  Google Scholar 

  2. Su’ait MS, Rahman MYA, Ahmad A (2015) Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol Energy 115:452–470. https://doi.org/10.1016/j.solener.2015.02.043

    Article  CAS  Google Scholar 

  3. Khan MZH, Al-Mamun MR, Halder PK, Aziz MA (2017) Performance improvement of modified dye-sensitized solar cells. Renew Sustain Energy Rev 71:602–617

    Article  CAS  Google Scholar 

  4. Latip NAA, Ng HM, Farah N et al (2017) Novel development towards preparation of highly efficient ionic liquid based co-polymer electrolytes and its application in dye-sensitized solar cells. Org Electron Phys Mater Appl 41:33–41. https://doi.org/10.1016/j.orgel.2016.11.040

    Article  CAS  Google Scholar 

  5. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  6. Green MA, Emery K (2020) Solar cell efficiency tables. Prog Photovoltaics Res Appl. https://doi.org/10.1002/pip.4670010104

    Article  Google Scholar 

  7. Yang K, Yang X, Deng Z, Jiang M (2022) High stability tetradentate ligand copper complexes and organic small molecule hybrid electrolyte for dye-sensitized solar cells. Electrochim Acta 432:141108. https://doi.org/10.1016/j.electacta.2022.141108

    Article  CAS  Google Scholar 

  8. Sing Liow K, Sipaut CS, Fran Mansa R et al (2022) Effect of PEG molecular weight on the polyurethane-based quasi-solid-state electrolyte for dye-sensitized solar cells. Polymers (Basel) 14(17):3603. https://doi.org/10.3390/polym14173603

  9. Gerosa M, Sacco A, Scalia A et al (2016) Toward totally flexible dye-sensitized solar cells based on titanium grids and polymeric electrolyte. IEEE J Photovoltaics 6:498–505. https://doi.org/10.1109/JPHOTOV.2016.2514702

    Article  Google Scholar 

  10. Nishshanke GBMMM, Arof AK, Bandara TMWJ (2020) Review on mixed cation effect in gel polymer electrolytes for quasi solid-state dye-sensitized solar cells. Ionics (Kiel) 26:3685–3704. https://doi.org/10.1007/s11581-020-03668-5

    Article  CAS  Google Scholar 

  11. Nijisha P, Bhabhina NM, Sindhu S (2016) Application of gel electrolyte in dye sensitized solar cells. Nanosyst Phys Chem Math 7:752–754. https://doi.org/10.17586/2220-8054-2016-7-4-752-754

    Article  CAS  Google Scholar 

  12. Teo LP, Buraidah MH, Arof AK (2020) Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics (Kiel) 26:4215–4238. https://doi.org/10.1007/s11581-020-03655-w

    Article  CAS  Google Scholar 

  13. Bella F, Popovic J, Lamberti A et al (2017) Interfacial effects in solid-liquid electrolytes for improved stability and performance of dye-sensitized solar cells. ACS Appl Mater Interfaces 9:37797–37803. https://doi.org/10.1021/acsami.7b11899

    Article  CAS  PubMed  Google Scholar 

  14. Sacco A, Bella F, De La Pierre S et al (2015) Electrodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: application in dye-sensitized solar cells. ChemPhysChem 16:960–969. https://doi.org/10.1002/cphc.201402891

    Article  CAS  PubMed  Google Scholar 

  15. Bella F, Verna A, Gerbaldi C (2018) Patterning dye-sensitized solar cell photoanodes through a polymeric approach: a perspective. Mater Sci Semicond Process 73:92–98. https://doi.org/10.1016/j.mssp.2017.07.030

    Article  CAS  Google Scholar 

  16. Bahadar Khan S, Yadav PK, Decoppet JD et al (2020) Photovoltaic performance of porphyrin-based dye-sensitized solar cells with binary ionic liquid electrolytes. Energy Technol 8:1–5. https://doi.org/10.1002/ente.202000092

    Article  CAS  Google Scholar 

  17. Bella F, Lamberti A, Bianco S et al (2016) Floating, flexible polymeric dye-sensitized solar-cell architecture: the way of near-future photovoltaics. Adv Mater Technol 1:1–9. https://doi.org/10.1002/admt.201600002

    Article  CAS  Google Scholar 

  18. Sharma K, Sharma V, Sharma SS (2018) Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res Lett 13:381. https://doi.org/10.1186/s11671-018-2760-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wanninayake WMNMB, Premaratne K, Kumara GRA, Rajapakse RMG (2016) Use of lithium iodide and tetrapropylammonium iodide in gel electrolytes for improved performance of quasi-solid-state dye-sensitized solar cells: recording an efficiency of 6.40%. Electrochim Acta 191:1037–1043. https://doi.org/10.1016/j.electacta.2016.01.108

    Article  CAS  Google Scholar 

  20. Syairah A, Khanmirzaei MH, Saidi NM et al (2018) Effect of different imidazolium-based ionic liquids on gel polymer electrolytes for dye-sensitized solar cells. Ionics (Kiel). https://doi.org/10.1007/s11581-018-2603-6

    Article  Google Scholar 

  21. Xu T, Li J, Gong R et al (2018) Environmental effects on the ionic conductivity of poly(methyl methacrylate) (PMMA)-based quasi-solid-state electrolyte. Ionics (Kiel) 24:2621–2629. https://doi.org/10.1007/s11581-017-2397-y

    Article  CAS  Google Scholar 

  22. Teo LP, Tiong TS, Buraidah MH, Arof AK (2018) Effect of lithium iodide on the performance of dye sensitized solar cells (DSSC) using poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) based gel polymer electrolytes. Opt Mater (Amst) 85:531–537. https://doi.org/10.1016/j.optmat.2018.09.026

    Article  CAS  Google Scholar 

  23. Cao X, Ma J, Shi X, Ren Z (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010. https://doi.org/10.1016/j.apsusc.2006.03.090

    Article  CAS  Google Scholar 

  24. Farhana NK, Ramesh S, Ramesh K (2019) Efficiency enhancement of dye-sensitized solar cell based gel polymer electrolytes using poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/tetrapropylammonium iodide. Mater Sci Semicond Process 91:414–421. https://doi.org/10.1016/j.mssp.2018.12.007

    Article  CAS  Google Scholar 

  25. Guirguis OW, Moselhey MTH (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 04:57–67. https://doi.org/10.4236/ns.2012.41009

    Article  CAS  Google Scholar 

  26. Geisari N, Kalnins M (2016) Poly(vinyl alcohol) - poly(vinyl acetate) composite films from water systems: formation, strength-deformation characteristics, fracture. IOP Conf Ser Mater Sci Eng 111:0–6. https://doi.org/10.1088/1757-899X/111/1/012009

    Article  CAS  Google Scholar 

  27. Pundir SS, Mishra K, Rai DK (2015) Poly(vinyl)alcohol/1-butyl-3-methylimidazolium hydrogen sulfate solid polymer electrolyte: structural and electrical studies. Solid State Ionics 275:86–91. https://doi.org/10.1016/j.ssi.2015.03.024

    Article  CAS  Google Scholar 

  28. Baskaran R, Selvasekarapandian S, Kuwata N et al (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc-PMMA. Solid State Ionics 177:2679–2682. https://doi.org/10.1016/j.ssi.2006.04.013

    Article  CAS  Google Scholar 

  29. Ng HM, Ramesh S, Ramesh K (2015) Exploration on the P(VP-co-VAc) copolymer based gel polymer electrolytes doped with quaternary ammonium iodide salt for DSSC applications: electrochemical behaviors and photovoltaic performances. Org Electron 22:132–139. https://doi.org/10.1016/j.orgel.2015.03.020

    Article  CAS  Google Scholar 

  30. Etienne S, Becker C, Ruch D et al (2010) Synergetic effect of poly(vinyl butyral) and calcium carbonate on thermal stability of poly(vinyl chloride) nanocomposites investigated by TG-FTIR-MS. J Therm Anal Calorim 100:667–677. https://doi.org/10.1007/s10973-009-0443-3

    Article  CAS  Google Scholar 

  31. Venkatesan S, Lee YL (2017) Nanofillers in the electrolytes of dye-sensitized solar cells – a short review. Coord Chem Rev 353:58–112. https://doi.org/10.1016/j.ccr.2017.09.026

    Article  CAS  Google Scholar 

  32. Chae H, Song D, Lee YG et al (2014) Chemical effects of tin oxide nanoparticles in polymer electrolytes-based dye-sensitized solar cells. J Phys Chem C 118:16510–16517. https://doi.org/10.1021/jp4117485

    Article  CAS  Google Scholar 

  33. Yang Y, Guo XY, Zhao XZ (2012) A novel composite polysaccharide/inorganic oxide electrolyte for high efficiency quasi-solid-state dyesensitized solar cell. Procedia Eng 36:13–18. https://doi.org/10.1016/j.proeng.2012.03.004

    Article  CAS  Google Scholar 

  34. Saidi NM, Omar FS, Numan A et al (2019) Enhancing the efficiency of a dye-sensitized solar cell based on a metal oxide nanocomposite gel polymer electrolyte. ACS Appl Mater Interfaces 11:30185–30196. https://doi.org/10.1021/acsami.9b07062

    Article  CAS  PubMed  Google Scholar 

  35. Goh ZL, Saidi NM, Farhana NK et al (2022) Sonochemically synthesized cobalt oxide nanoparticles as an additive for natural polymer iodide electrolyte based dye-sensitized solar cells. Sustain Energy Technol Assessments 49:101746. https://doi.org/10.1016/J.SETA.2021.101746

    Article  Google Scholar 

  36. Omar FS, Numan A, Duraisamy N et al (2016) Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv 6:76298–76306. https://doi.org/10.1039/c6ra15111f

    Article  CAS  Google Scholar 

  37. Farhana NK, Bashir S, Ramesh S, Ramesh K (2021) Augmentation of dye-sensitized solar cell photovoltaic conversion efficiency via incorporation of terpolymer poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) based gel polymer electrolytes. Polymer (Guildf) 223:123713. https://doi.org/10.1016/j.polymer.2021.123713

    Article  CAS  Google Scholar 

  38. Chong MY, Numan A, Liew CW et al (2017) Comparison of the performance of copper oxide and yttrium oxide nanoparticle based hydroxylethyl cellulose electrolytes for supercapacitors. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.44636

    Article  CAS  Google Scholar 

  39. Umek P (2004) Synthesis and magnetic characterization of Cu(OH)2 nanoribbons. AIP Conf Proc 427:427–430. https://doi.org/10.1063/1.1812122

    Article  Google Scholar 

  40. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer (Guildf) 37:1371–1376. https://doi.org/10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  41. Bandara TMWJ, Karunathilaka DGN, Ratnasekera JL et al (2017) Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide. Ionics (Kiel) 23:1711–1719. https://doi.org/10.1007/s11581-017-2016-y

    Article  CAS  Google Scholar 

  42. Venkatesan S, Chen YY, Chien CY et al (2021) Quasi-solid-state composite electrolytes with Al2O3 and ZnO nanofillers for dye-sensitized solar cells. Electrochim Acta 380:137588. https://doi.org/10.1016/J.ELECTACTA.2020.137588

    Article  CAS  Google Scholar 

  43. Mohamed Ali T, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics (Kiel) 21:829–840. https://doi.org/10.1007/s11581-014-1240-y

    Article  CAS  Google Scholar 

  44. Tan HW, Ramesh S, Liew CW (2019) Electrical, thermal, and structural studies on highly conducting additive-free biopolymer electrolytes for electric double-layer capacitor application. Ionics (Kiel) 25:4861–4874. https://doi.org/10.1007/s11581-019-03017-1

    Article  CAS  Google Scholar 

  45. Teoh KH, Lim CS, Liew CW et al (2015) Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler. Ionics (Kiel) 21:2061–2068. https://doi.org/10.1007/s11581-014-1359-x

    Article  CAS  Google Scholar 

  46. Tiong TS, Buraidah MH, Teo LP, Arof AK (2016) Conductivity studies of poly(ethylene oxide)(PEO)/poly(vinyl alcohol) (PVA) blend gel polymer electrolytes for dye-sensitized solar cells. Ionics (Kiel) 22:2133–2142. https://doi.org/10.1007/s11581-016-1758-2

    Article  CAS  Google Scholar 

  47. Venkatesan S, Hidayati N, Liu IP, Lee YL (2016) Highly efficient gel-state dye-sensitized solar cells prepared using propionitrile and poly(vinylidene fluoride-co-hexafluoropropylene). J Power Sources 336:385–390. https://doi.org/10.1016/j.jpowsour.2016.11.014

    Article  CAS  Google Scholar 

  48. Jeong NC, Lee JS, Tae EL et al (2008) Acidity scale for metal oxides and Sanderson’s electronegativities of lanthanide elements. Angew Chemie - Int Ed 47:10128–10132. https://doi.org/10.1002/anie.200803837

    Article  CAS  Google Scholar 

  49. Arya A, Sharma AL (2020) Polymer nanocomposites: synthesis and characterization. Environ Nanotechnol 4:265–315

  50. Arya A, Saykar NG, Sharma AL (2019) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:1–15. https://doi.org/10.1002/app.47361

    Article  CAS  Google Scholar 

  51. Cho KW, Sunwoo SH, Hong YJ et al (2022) Soft bioelectronics based on nanomaterials. Chem Rev 122:5068–5143. https://doi.org/10.1021/ACS.CHEMREV.1C00531/ASSET/IMAGES/LARGE/CR1C00531_0027.JPEG

    Article  CAS  PubMed  Google Scholar 

  52. Afzal A, Nawfal I, Mahbubul IM, Kumbar SS (2019) An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim 135:393–418. https://doi.org/10.1007/s10973-018-7144-8

    Article  CAS  Google Scholar 

  53. Zebardastan N, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell. Org Electron 49:292–299. https://doi.org/10.1016/j.orgel.2017.06.062

    Article  CAS  Google Scholar 

  54. Chalkias DA, Giannopoulos DI, Kollia E et al (2018) Preparation of polyvinylpyrrolidone-based polymer electrolytes and their application by in-situ gelation in dye-sensitized solar cells. Electrochim Acta 271:632–640. https://doi.org/10.1016/J.ELECTACTA.2018.03.194

    Article  CAS  Google Scholar 

  55. Chai KL, Noor IM, Aung MM et al (2020) Non-edible oil based polyurethane acrylate with tetrabutylammonium iodide gel polymer electrolytes for dye-sensitized solar cells. Sol Energy 208:457–468. https://doi.org/10.1016/j.solener.2020.08.020

    Article  CAS  Google Scholar 

  56. Yusuf SNF, Azzahari AD, Yahya R et al (2016) From crab shell to solar cell: a gel polymer electrolyte based on N-phthaloylchitosan and its application in dye-sensitized solar cells. RSC Adv 6:27714–27724. https://doi.org/10.1039/c6ra04188d

    Article  CAS  Google Scholar 

  57. Shanti R, Bella F, Salim YS et al (2016) Poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid): physico-chemical characterization and targeted dye sensitized solar cell application. Mater Des 108:560–569. https://doi.org/10.1016/j.matdes.2016.07.021

    Article  CAS  Google Scholar 

  58. Kumar A, Madaan M, Arya A et al (2020) Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-03639-6

    Article  Google Scholar 

  59. Do TNS, Schaetzl DM, Dey B et al (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C 116:21216–21223. https://doi.org/10.1021/jp3059454

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by a Research university grant from Universiti Malaya, Malaysia (IF033-2020). The authors would like to thank Collaborative Research in Engineering, Science & Technology Center (CREST) for their continuous support in this research (PV027-2018). A special thank you to ECLIMO SDN BHD as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhana, N.K., Goh, Z.L., Syahmi, M. et al. Dye-sensitized solar cells based on nanocomposite gel polymer electrolytes incorporating modified-CuO nanorod prepared by varying sonication durations. Ionics 29, 2075–2085 (2023). https://doi.org/10.1007/s11581-023-04951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04951-x

Keywords

Navigation