Skip to main content

Advertisement

Log in

Degraded chitosan hydrogel-derived N, O self-doped hierarchical porous carbon as electrode material for symmetric supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Rational design and regulation of the porosity of porous carbon are of great significance for high-energy–density supercapacitors. In this study, we synthesize degraded chitosan hydrogel-derived hierarchical porous carbon (DCHPC) with appropriate pore size distribution by adjusting the crosslinking density of hydrogel precursor and assisting KOH activation. The obtained DCHPC-3 has a high specific surface area (3179 m2 g−1), large pore volume (1.60 cm3 g−1), high microporosity (77.5%), and a hierarchical interconnected porous frame. The DCHPC-3 electrode performs ultra-high specific capacitance of 506.3 F g−1 at the current density of 0.3 A g−1. It exhibits excellent cycling stability, whose capacitance retention is close to 100% after 10,000 cycles. In addition, a symmetric supercapacitor based on a DCHPC-3 electrode shows a high energy density of 30.75 Wh kg−1 at the power density of 700 W kg−1. This study provides a facile design idea for porous carbon materials with special pore sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

We confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140

    Article  CAS  Google Scholar 

  2. Han Q, Li Y, Zhang W, Li X, Geng D, Zhang X, He D (2019) Two-step route for manufacturing the bio-mesopores structure functional composites by mushroom-derived carbon/Co3O4 for lithium-ion batteries. J Electroanal Chem 848:113347

    Article  CAS  Google Scholar 

  3. Shaikh JS, Shaikh NS, Kharade R, Beknalkar SA, Patil JV (2018) M.P. Suryawanshi, P. Kanjanaboos, C.K. Hong, J.H. Kim, P.S. Patil, Symmetric supercapacitor: sulphurized graphene and ionic liquid. J Colloid Interface Sci 527:40–48

    Article  CAS  PubMed  Google Scholar 

  4. Miao Z, Huang Y, Xin J, Su X, Sang Y, Liu H, Wang J-J (2019) High-performance symmetric supercapacitor constructed using carbon cloth boosted by engineering oxygen-containing functional groups. ACS Appl Mater Interfaces 11:18044–18050

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Liu Q, Wang L, Yang X, Yang W, Zheng J, Hou H (2020) Advanced supercapacitors based on porous hollow carbon nanofiber electrodes with high specific capacitance and large energy density. ACS Appl Mater Interfaces 12:4777–4786

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Tian D, Shen F, Nnanna PC, Hu J, Zeng Y, Yang G, He J, Deng S (2020) Valorization of composting leachate for preparing carbon material to achieve high electrochemical performances for supercapacitor electrode. J Power Sources 458:28057

    Article  Google Scholar 

  7. Cheng F, Yang X, Zhang S, Lu W (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678

    Article  CAS  Google Scholar 

  8. Chen S, Jiang H, Cheng Q, Wang G, Petr S, Li C (2021) Amorphous vanadium oxides with metallic character for asymmetric supercapacitors. Chem Eng J 403:126380

    Article  CAS  Google Scholar 

  9. Chen L, Lian C, Jiang H, Chen L, Yan J, Liu H, Li C (2020) Dual-conductive N, S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor. Chem Eng Sci 217:115496

    Article  CAS  Google Scholar 

  10. Zhu Z, Jiang H, Guo S, Cheng Q, Hu Y, Li C (2015) Dual tuning of biomass-derived hierarchical carbon nanostructures for supercapacitors: the role of balanced meso/microporosity and graphene. Sci Rep 5:15936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Shi Z, Gao Y, An W, Cao Z, Liu J (2016) Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces 8:28283–28290

    Article  CAS  PubMed  Google Scholar 

  12. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  PubMed  Google Scholar 

  13. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162

    Article  CAS  Google Scholar 

  14. Yan J, Wang Q, Lin C, Wei T, Fan Z (2014) Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv Energy Mater 4:1400500

    Article  Google Scholar 

  15. Liu Y, Quan X, Fan X, Wang H (2015) ChemInform Abstract: High-yield electrosynthesis of hydrogenpPeroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int Ed 54:6941–6945

    Google Scholar 

  16. Luo J, Zhang H, Zhang Z, Yu J, Yang Z (2019) In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon 155:1–8

    Article  CAS  Google Scholar 

  17. Silva AP, Argondizo A, Juchen PT, Ruotolo LAM (2021) Ultrafast capacitive deionization using rice husk activated carbon electrodes. Sep Purif Technol 271:118872

    Article  CAS  Google Scholar 

  18. Zhang H, Guo H, Zhang J, Li C, Chen Y, Wu N, Pan Z, Yang W (2022) NiCo-MOF directed NiCoP and coconut shell derived porous carbon as high-performance supercapacitor electrodes. J Energy Storage 54:105356

    Article  Google Scholar 

  19. Jin H, Hu J, Wu S, Wang X, Zhang H, Xu H, Lian K (2018) Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. J Power Sources 384:270–277

    Article  CAS  Google Scholar 

  20. Yu S, Wang L, Li Q, Zhang Y, Zhou H (2022) Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Mater Today Sustain 19:100209

    Article  Google Scholar 

  21. Selvaraj AR, Muthusamy A, Inho C, Kim H-J, Senthil K, Prabakar K (2021) Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 174:463–474

    Article  CAS  Google Scholar 

  22. Kou S, Peters LM, Mucalo MR (2021) Chitosan: a review of sources and preparation methods. Int J Biol Macromol 169:85–94

    Article  CAS  PubMed  Google Scholar 

  23. Nowacki K, Galiński M, Stępniak I (2019) Synthesis and characterization of modified chitosan membranes for applications in electrochemical capacitor. Electrochim Acta 320:134632

    Article  CAS  Google Scholar 

  24. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383

    Article  CAS  Google Scholar 

  25. Gang X, Krishnamoorthy M, Jiang W, Pan J, Pan Z, Liu X (2021) A novel in-situ preparation of N-rich spherical porous carbon as greatly enhanced material for high-performance supercapacitors. Carbon 171:62–71

    Article  CAS  Google Scholar 

  26. Wang X, Yang C, Li J, Chen XA, Yang K, Yu X, Lin D, Zhang Q, Wang S, Wang J, Xia Z, Jin H (2021) Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion. Adv Funct Mater 31:2009109

    Article  CAS  Google Scholar 

  27. Long C, Qi D, Wei T, Yan J, Jiang L, Fan Z (2014) Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv Funct Mater 24:3953–3961

    Article  CAS  Google Scholar 

  28. Quan H, Fan X, Wang W, Gao W, Dong Y, Chen D (2018) Hierarchically porous carbon derived from biomass: effect of mesopore and heteroatom-doping on electrochemical performance. Appl Surf Sci 460:8–16

    Article  CAS  Google Scholar 

  29. Cui J, Zhang Z-X, Quan H, Hu Y, Wang S, Chen D (2022) Effect of various ammonium salts as activating additive on the capacitance performance of hierarchical porous carbon derived from camellia husk. J Energy Storage 51:104347

    Article  Google Scholar 

  30. Sidheekha MP, Rajendran GE, Shabeeba AK, Ismail YA (2021) Current sensing supercapacitor electrodes based on chitosan/poly-o-toluidine hydrogel composites. J Mater Res 3:1914–1926

    Article  Google Scholar 

  31. Jiang C, Gao M, Zhang S, Huang L, Yu S, Song Z, Wu Q (2022) Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.11.201

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan C, Liu X, Jia M, Luo Z, Yao J (2015) Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J Mater Chem A 3:3409–3415

    Article  CAS  Google Scholar 

  33. Mohammed AA, Chen C, Zhu Z (2019) Green and high performance all-solid-state supercapacitors based on MnO2/Faidherbia albida fruit shell derived carbon sphere electrodes. J Power Sources 417:1–13

    Article  CAS  Google Scholar 

  34. Fina F, Callear SK, Carins GM, Irvine JTS (2015) Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem Mater 27:2612–2618

    Article  CAS  Google Scholar 

  35. Bommier C, Surta TW, Dolgos M, Ji X (2015) New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 15:5888–5892

    Article  CAS  PubMed  Google Scholar 

  36. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett 10:751–758

    Article  CAS  PubMed  Google Scholar 

  37. Yu HJ, Shang L, Bian T, Shi R, Waterhouse GIN, Zhao YF, Zhou C, Wu LZ, Tung CH, Zhang TR (2016) Carbon nanosheets: nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28:5080–5086

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127

    Article  CAS  Google Scholar 

  39. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24:2357–2361

    Article  CAS  PubMed  Google Scholar 

  40. Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, Liang W, Li A (2019) Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv Energy Mater 9:1802158

    Article  Google Scholar 

  41. Jayaramulu K, Geyer F, Petr M, Zboril R, Vollmer D, Fischer RA (2017) Shape controlled hierarchical porous hydrophobic/oleophilic metal-organic nanofibrous gel composites for oil adsorption. Adv Mater 29:1605307

    Article  Google Scholar 

  42. Fan Y-M, Song W-L, Li X, Fan L-Z (2017) Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111:658–666

    Article  CAS  Google Scholar 

  43. Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L (2015) High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater 27:2042–2048

    Article  CAS  PubMed  Google Scholar 

  44. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49:3019–3023

    Article  CAS  Google Scholar 

  45. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447

    Article  CAS  Google Scholar 

  46. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365

    Article  CAS  PubMed  Google Scholar 

  47. Gopalakrishnan A, Badhulika S (2020) Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J Power Sources 480:228830

    Article  CAS  Google Scholar 

  48. Yang JL, Ju ZC, Jiang Y, Xing Z, Xi BJ, Feng JK, Xiong SL (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104

    Article  Google Scholar 

  49. Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79

    Article  Google Scholar 

  50. Ma Z, Chen D, Gu J, Bao B, Zhang Q (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manage 89:251–259

    Article  CAS  Google Scholar 

  51. Tao L, Zhao G-B, Qian J, Qin Y-K (2010) TG–FTIR characterization of pyrolysis of waste mixtures of paint and tar slag. J Hazard Mater 175:754–761

    Article  CAS  PubMed  Google Scholar 

  52. Jiang X, Li C, Chi Y, Yan J (2010) TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion. J Hazard Mater 173:205–210

    Article  CAS  PubMed  Google Scholar 

  53. Liu YJ, Liu N, Yu LM, Jiang XH, Yan XF (2019) Design and synthesis of mint leaf-like polyacrylonitrile and carbon nanosheets for flexible all-solid-state asymmetric supercapacitors. Chem Eng J 362:600–608

    Article  CAS  Google Scholar 

  54. Li BQ, Cheng YF, Dong LP, Wang YM, Chen JC, Huang CF, Wei DQ, Feng YJ, Jia DC, Zhou Y (2017) Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors. Carbon 122:592–603

    Article  CAS  Google Scholar 

  55. Rui X, Sun W, Wu C, Yu Y, Yan Q (2015) An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv Mater 27:6670–6676

    Article  CAS  PubMed  Google Scholar 

  56. Peng L, Liang Y, Dong H, Hu H, Zhao X, Cai Y, Xiao Y, Liu Y, Zheng M (2018) Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. J Power Sources 377:151–160

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21566030), Ministry of Science and Technology China-South Africa Joint Research Program (No. CS08-L15), Project of Inner Mongolia Education Department (NJZY089), Natural Science Foundation of Inner Mongolia (2015MS0205), Scientific research startup foundation Project (No. DC2200000899), and creative talents team of “Prairie Talent” engineering industry and the “Prairie Talent” of organization Department of Inner Mongolia Party Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Li or Ling Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1580 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ma, D., Zhang, X. et al. Degraded chitosan hydrogel-derived N, O self-doped hierarchical porous carbon as electrode material for symmetric supercapacitor. Ionics 29, 1173–1185 (2023). https://doi.org/10.1007/s11581-023-04880-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04880-9

Keywords

Navigation