Skip to main content

Advertisement

Log in

Microwave synthesis of nitrogen and sulfur doping lignin-based carbon materials for high-cycling performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

 Abstract

Lignin (L) has a large storage capacity and high carbon content in nature; obtaining the required electrochemical properties by direct carbonization of L is difficult. N and S co-doped L-based carbon material was successfully prepared by one-step microwave method. The structure, surface elements, and chemical states of the materials were tested by FTIR, SEM, TEM, XPS, and BET. The capacitance of modified lignin reached 232.4 F g−1 (1 A g−1). When circulating after 100,000 times under 10 A g−1, the retention rate was 86.59% of the initial value. A supercapacitor was assembled with the prepared material as positive electrode and AC as negative electrode. It offered the energy density of 12.603 W h kg−1, and its power density could achieve 749.99 W kg−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen C, Yu D, Zhao G, Du B, Tang W, Sun L, Sun Y, Besenbacher F, Yu M (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389

    Article  CAS  Google Scholar 

  2. Kopka R (2017) Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale Res Lett 12(1):636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yu L, Chen GZ (2019) Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front Chem 7:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang H, Zhang Y (2015) Estimation of supercapacitor energy using a linear capacitance for applications in wireless sensor networks. J Power Sources 275:498–505

    Article  CAS  Google Scholar 

  5. Wang H, Wen J (2020) Biomass porous carbon-based composite for high performance supercapacitor. Mater Res Express 7(11):1150601

  6. Fahmy TYA, Fahmy Y, Mobarak F, El-Sakhawy M, Abou-Zeid RE (2018) Biomass pyrolysis: past, present, and future. Environ Dev Sustain 22(1):17–32

    Article  Google Scholar 

  7. Duan B, Gao X, Yao X, Fang Y, Huang L, Zhou J, Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491

    Article  CAS  Google Scholar 

  8. Hou L, Hu Z, Wang X, Qiang L, Zhou Y, Lv L, Li S (2019) Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors. J Colloid Interface Sci 540:88–96

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    Article  CAS  PubMed  Google Scholar 

  10. Mathis TS, Kurra N, Wang X, Pinto D, Simon P, Gogotsi Y (2019) Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater 9(39):1902007

  11. Sun H, Quan H, Pan M, Zhang Z, Zeng Y, Chen D (2020) Nitrogen-doped hierarchically structured porous carbon as a bifunctional electrode material for oxygen reduction and supercapacitor. J Alloys Comp 826:54208

  12. Cao Y, Wang K, Wang X, Gu Z, Fan Q, Gibbons W, Hoefelmeyer JD, Kharel PR, Shrestha M (2016) Hierarchical porous activated carbon for supercapacitor derived from corn stalk core by potassium hydroxide activation. Electrochim Acta 212:839–847

    Article  CAS  Google Scholar 

  13. Wu Y, Cao J-P, Zhao X-Y, Zhuang Q-Q, Zhou Z, Huang Y, Wei X-Y (2020) High-performance electrode material for electric double-layer capacitor based on hydrothermal pre-treatment of lignin by ZnCl2. Appl Surf Sci 508:144536

  14. Linan LZ, Cidreira ACM, Da Rocha CQ, De Menezes FF, Rocha GJDM, Paiva AEM (2021) Utilization of acai berry residual biomass for extraction of lignocellulosic byproducts. J Bioresour  Bioprod 6(4):323–337

  15. Chang Z-Z, Yu B-J, Wang C-Y (2016) Lignin-derived hierarchical porous carbon for high-performance supercapacitors. J Solid State Electrochem 20(5):1405–1412

    Article  CAS  Google Scholar 

  16. Jjagwe J, Olupot PW, Menya E, Kalibbala HM (2021) Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J Bioresour Bioprod 6(4):292–322

  17. Park JH, Rana HH, Lee JY, Park HS (2019) Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 7(28):16962–16968

    Article  CAS  Google Scholar 

  18. Chen W, Wang X, Feizbakhshan M, Liu C, Hong S, Yang P, Zhou X (2019) Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. J Colloid Interface Sci 540:524–534

    Article  CAS  PubMed  Google Scholar 

  19. Han J, Li Q, Peng C, Shu N, Pan F, Wang J, Zhu Y (2020) Increasing S dopant and specific surface area of N/S-codoped porous carbon by in-situ polymerization of PEDOT into biomass precursor for high performance supercapacitor. Appl Surf Sci 502:144191

  20. Ping Y, Han J, Li J, Xiong B, Fang P, He C (2019) N, S co-doped porous carbons from natural Juncus effuses for high performance supercapacitors. Diam Relat Mater 100:107577

  21. Liu M, Huo S, Xu M, Wu L, Liu M, Xue Y, Yan Y-M (2018) Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochim Acta 274:389–399

    Article  CAS  Google Scholar 

  22. Wang F, Chen L, Li H, Duan G, He S, Zhang L, Zhang G, Zhou Z, Jiang S (2020) N-doped honeycomb-like porous carbon towards high-performance supercapacitor. Chin Chem Lett 31(7):1986–1990

    Article  CAS  Google Scholar 

  23. Cao L, Li H, Xu Z, Gao R, Wang S, Zhang G, Jiang S, Xu W, Hou H (2020) Camellia pollen-derived carbon with controllable N content for high-performance supercapacitors by ammonium chloride activation and dual N-doping. ChemNanoMat 7(1):34–43

    Article  CAS  Google Scholar 

  24. Cao L, Li H, Liu X, Liu S, Zhang L, Xu W, Yang H, Hou H, He S, Zhao Y, Jiang S (2021) Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with “sphere-in-layer” interconnection for high-performance supercapacitor. J Colloid Interface Sci 599:443–452

    Article  CAS  PubMed  Google Scholar 

  25. Zheng S, Zhang J, Deng H, Du Y, Shi X (2021) Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J Bioresour Bioprod 6(2):142–151

    Article  CAS  Google Scholar 

  26. Zhou X, Meng T, Yi F, Shu D, Han D, Zhu Z, Gao A, Liu C, Li X, Yang K, Yi H (2020) Supramolecular-induced confining methylene blue in three-dimensional reduced graphene oxide for high-performance supercapacitors. J Power Sources 475:228554

  27. Roldán S, Granda M, Menéndez R, Santamaría R, Blanco C (2012) Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim Acta 83:241–246

    Article  CAS  Google Scholar 

  28. Zhang Z, Zhang Y, Mu X, Du J, Wang H, Huang B, Zhou J, Pan X, Xie E (2017) The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths. Electrochim Acta 242:100–106

    Article  CAS  Google Scholar 

  29. Bi Y, Nautiyal A, Zhang H, Yan H, Luo J, Zhang X (2018) Facile and ultrafast solid-state microwave approach to MnO2-NW@Graphite nanocomposites for supercapacitors. Ceram Int 44(5):5402–5410

    Article  CAS  Google Scholar 

  30. Gopalakrishnan K, Govindaraj A, Rao CNR (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1(26):7563–7565

  31. Wang Y, Yang B, Zhang D, Shi H, Lei M, Li H, Wang K (2020) Strong polar nonaqueous solvent-assisted microwave fabrication of N and P co-doped microporous carbon for high-performance supercapacitor. Appl Surf Sci 512:145711

  32. Sun H, Yang Z, Pu Y, Dou W, Wang C, Wang W, Hao X, Chen S, Shao Q, Dong M, Wu S, Ding T, Guo Z (2019) Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloid Interface Sci 547:40–49

    Article  CAS  PubMed  Google Scholar 

  33. Seevakan K, Manikandan A, Devendran P, Slimani Y, Baykal A, Alagesan T (2018) Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram Int 44(16):20075–20083

    Article  CAS  Google Scholar 

  34. Wang C, Lan F, He Z, Xie X, Zhao Y, Hou H, Guo L, Murugadoss V, Liu H, Shao Q, Gao Q, Ding T, Wei R, Guo Z (2019) Iridium-based catalysts for solid polymer electrolyte electrocatalytic water splitting. Chemsuschem 12(8):1576–1590

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Zhang N, Yi Y, Gibril ME, Wang S, Kong F (2020) Effect of lignin-based monomer on controlling the molecular weight and physical properties of the polyacrylonitrile/lignin copolymer. Int J Biol Macromol 164:2312–2322

    Article  CAS  PubMed  Google Scholar 

  36. Guan T, Li K, Zhao J, Zhao R, Zhang G, Zhang D, Wang J (2017) Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. Journal of Materials Chemistry A 5(30):15869–15878

    Article  CAS  Google Scholar 

  37. Yuksel R, Yarar Kaplan B, Bicer E, Yurum A, Alkan Gursel S, Unalan HE (2018) All-carbon hybrids for high performance supercapacitors. Int J Energy Res 42(11):3575–3587

    Article  CAS  Google Scholar 

  38. Yu Y, Tan Y, Yang B, Yuan L, Shen X, Hu X (2019) Electrochemical transformation method for the preparation of novel 3D hybrid porous CoOOH/Co(OH)2 composites with excellent pseudocapacitance performance. J Power Sources 443:227278

  39. Guan L, Yu L, Chen GZ (2016) Capacitive and non-capacitive faradaic charge storage. Electrochim Acta 206:464–478

    Article  CAS  Google Scholar 

  40. Akinwolemiwa B, Wei C, Chen GZ (2017) Mechanisms and designs of asymmetrical electrochemical capacitors. Electrochim Acta 247:344–357

    Article  CAS  Google Scholar 

  41. Shree Kesavan K, Surya K, Michael MS (2018) High powered hybrid supercapacitor with microporous activated carbon. Solid State Ionics 321:15–22

    Article  CAS  Google Scholar 

  42. Huang M, Wang P, Liu Y, Zhao J, Lin Q, Lu M (2019) One-step synthesis of honeycomb-like Ni/Mn-PMo12 ultra-thin nanosheets for high-performance asymmetric supercapacitors. Appl Surf Sci 497:143760

  43. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. J Power Sources 158(2):1510–1516

    Article  CAS  Google Scholar 

  44. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C-M (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  45. Du Y-F, Sun G-H, Li Y, Cheng J-Y, Chen J-P, Song G, Kong Q-Q, Xie L-J, Chen C-M (2021) Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon 178:243–255

    Article  CAS  Google Scholar 

  46. Ren P-G, He W, Dai Z, Hou X, Ren F, Jin Y-L (2020) One-step synthesis of nitrogen, sulfur co-doped interconnected porous carbon derived from methylene blue for high-performance supercapacitors. Diam Relat Mater 109:108028

  47. Hui Z, Mayilvahanan KS, Ganko K, Yang Y, Zhang X, Ju Z, Takeuchi KJ, Marschilok AC, Yu G, Takeuchi E, West AC (2021) Optimal electrode-scale design of Li-ion electrodes: a general correlation. Energy Stor Mater 39:176–185

    Article  Google Scholar 

  48. Liu S, Sarwar S, Wang J, Zhang H, Li T, Luo J, Zhang X (2021) The microwave synthesis of porous CoSe2 nanosheets for super cycling performance supercapacitors. J Mater Chem C 9(1):228–237

    Article  CAS  Google Scholar 

  49. Liu S, Sarwar S, Zhang H, Guo Q, Luo J, Zhang X (2020) One-step microwave-controlled synthesis of CoV2O6•2H2O nanosheet for super long cycle-life battery-type supercapacitor. Electrochimica Acta 364:137320

  50. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sources 341:309–317

    Article  CAS  Google Scholar 

  51. Yin WM, Tian LF, Pang B, Guo YR, Li SJ, Pan QJ (2020) Fabrication of dually N/S-doped carbon from biomass lignin: porous architecture and high-rate performance as supercapacitor. Int J Biol Macromol 156:988–996

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Shi F, An Q, Zhai S, Wang K, Tong Y (2021) Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: insight into the hydrothermal carbonization and activation. Int J Biol Macromol 166:923–933

    Article  CAS  PubMed  Google Scholar 

  53. Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM 3rd, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910

    Article  CAS  PubMed  Google Scholar 

  54. Zhang K, Liu M, Zhang T, Min X, Wang Z, Chai L, Shi Y (2019) High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J Mater Chem A 7(47):26838–26848

    Article  CAS  Google Scholar 

  55. Wu Y (2017) One-step preparation of alkaline lignin-based activated carbons with different activating agents for electric double layer capacitor. Int J Electrochem Sci 12:7227–7239

  56. Chen R, Yang Y, Huang Q, Ling H, Li X, Ren J, Zhang K, Sun R, Wang X (2020) A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Stor Mater 32:208–215

    Article  Google Scholar 

  57. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462–6470

  58. Guo Y, Shi Z-Q, Chen M-M, Wang C-Y (2014) Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J Power Sources 252:235–243

    Article  CAS  Google Scholar 

  59. Tan Y, Xu C, Chen G, Liu Z, Ma M, Xie Q, Zheng N, Yao S (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl Mater Interfaces 5(6):2241–2248

    Article  CAS  PubMed  Google Scholar 

  60. Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, Zhang M, Jing X (2013) Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60:481–487

    Article  CAS  Google Scholar 

  61. Chang Y, Han G, Fu D, Liu F, Li M, Li Y (2014) Larger-scale fabrication of N-doped graphene-fiber mats used in high-performance energy storage. J Power Sources 252:113–121

    Article  CAS  Google Scholar 

  62. Ferrero GA, Fuertes AB, Sevilla M (2015) From Soybean residue to advanced supercapacitors. Sci Rep 5(1):6618

  63. Hui J (2021) Use of lignin-derived carbon to prepare nickel-based electrocatalysts for water splitting. Int J Electrochem Sci 16:210312

  64. Li P, Wang H, Fan W, Huang M, Shi J, Shi Z, Liu S (2021) Salt assisted fabrication of lignin-derived Fe, N, P, S codoped porous carbon as trifunctional catalyst for Zn-air batteries and water-splitting devices. Chem Eng J 421:129704

  65. Lei W, Yang B, Sun Y, Xiao L, Tang D, Chen K, Sun J, Ke J, Zhuang Y (2021) Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage. J Power Sources 488:229455

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (51672185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Jie Luo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, R., Zhang, T., Du, L. et al. Microwave synthesis of nitrogen and sulfur doping lignin-based carbon materials for high-cycling performance supercapacitor. Ionics 28, 4413–4424 (2022). https://doi.org/10.1007/s11581-022-04669-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04669-2

Keywords

Navigation