Skip to main content
Log in

Polyanthranilic acid microspheres as an active material for electrochemical detection of sub-picomolar lead ion concentrations in aqueous media

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An electrochemical sensor for the detection of lead ion in aqueous media has been developed by the modification of carbon paste electrode (CPE) with polyanthranilic acid (PANA) microspheres. PANA microspheres have been synthesized by the interfacial polymerization technique and characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The electrochemical response of the PANA-modified CPE to Pb2+ ions has been evaluated using differential pulse anodic stripping voltammetry (DPASV). Various electrode parameters governing sensor sensitivity, such as preparation of active layer by drop casting, potential of Pb deposition, pH of deposition solution, and time of deposition, have been optimized for maximum performance. The electrochemical characterization of the PANA-modified CPE has revealed two linear response regimes for Pb2+ ions, one in the range from 1 × 10−6 to 1 × 10−10 M, and one from 1 × 10−10 to 1 × 10−14 M with an LOD of 7.12 × 10−14 M (14.7 pg/L). The selectivity of the PANA-modified CPE has been tested against several cations and anions and is unaffected by Zn2+, NO3, and SO42− ions. The stability and reusability of the electrode are satisfactory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The materials prepared and the data recorded in this study are available from the senior author upon request.

References

  1. Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2015) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. In: Sharma SK (ed) Heavy metals in water: presence, removal and safety. R Soc Chem, Cambridge, UK, pp 1–24. https://doi.org/10.1039/9781782620174-00001

  2. Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119:157–184. https://doi.org/10.1002/jcb.26234

    Article  CAS  PubMed  Google Scholar 

  3. Scozzari A (2008) Electrochemical sensing methods: a brief review. In: Evangelista V, Barsanti L, Frassanito AM, Passarelli V, Gualtieri P (eds), Algal toxins: nature, occurrence, effect and detection. NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, Dordrecht, The Netherlands, p 17. https://doi.org/10.1007/978-1-4020-8480-5_16

  4. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455. https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh P, Sampath S (1999) Chemically functionalised exfoliated graphite: a new bulk modified, renewable surface electrode. Chem Commun 1999:2221–2222. https://doi.org/10.1039/A905355G

  6. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929. https://doi.org/10.1021/ac049232x

    Article  CAS  PubMed  Google Scholar 

  7. Jena BK, Raj CR (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta 76:161–165. https://doi.org/10.1016/j.talanta.2008.02.027

    Article  CAS  PubMed  Google Scholar 

  8. Fang X, Zong BY, Mao S (2018) Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett 10:64 19. https://doi.org/10.1007/s40820-018-0218-0

  9. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nature Mater 2:19–24. https://doi.org/10.1038/nmat768

    Article  CAS  Google Scholar 

  10. Widge AS, Jeffries-El M, Matsuoka Y (2004) Conductive polymer “molecular wires” increase electrical conductance across artificial cell membrane. Proc 26th Ann Int Conf IEEE Eng Med Biol Soc, San Francisco, CA, pp 4330–4333

  11. Xia L, Wei ZX, Wan MX (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11. https://doi.org/10.1016/j.jcis.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  12. March G, Nguyen TD, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5:241–275. https://doi.org/10.3390/bios5020241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Joseph A, Subramanian S, Ramamurthy PC, Sampath S, Kumar RV, Schwandt C (2015) Amine functionalized polyaniline grafted to exfoliated graphite oxide: synthesis, characterization and multi-element sensor studies. J Electroanal Chem 757:137–143. https://doi.org/10.1016/j.jelechem.2015.09.015

    Article  CAS  Google Scholar 

  14. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sens Actuator B 207:526–534. https://doi.org/10.1016/j.snb.2014.10.126

    Article  CAS  Google Scholar 

  15. Zuo YX, Xu JK, Zhu XF, Duan XM, Lu LM, Gao YS, Xing HK, Yang TT, Ye G, Yu YF (2016) Poly(3,4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II). Synth Met 220:14–19. https://doi.org/10.1016/j.synthmet.2016.05.022

    Article  CAS  Google Scholar 

  16. Jaymand M (2013) Recent progress in chemical modification of polyaniline. Prog Polym Sci 38:1287–1306. https://doi.org/10.1016/j.progpolymsci.2013.05.015

    Article  CAS  Google Scholar 

  17. Yoon HS (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–549. https://doi.org/10.3390/nano3030524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang QW, Wu JH, Sun XM, Li QH, Lin JM, Huang ML (2009) Templateless self-assembly of highly oriented polyaniline arrays. Chem Commun 2009:2166–2167. https://doi.org/10.1039/B821358E

  19. Tian ZF, Yu HJ, Wang L, Saleem M, Ren FJ, Ren PF, Chen YS, Sun RL, Sun YB, Huang L (2014) Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Adv 4:28195–28208. https://doi.org/10.1039/C4RA03146F

    Article  CAS  Google Scholar 

  20. Wang ZM, Liu EJ, Zhao X (2011) Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution. Thin Solid Films 519:5285–5289. https://doi.org/10.1016/j.tsf.2011.01.176

    Article  CAS  Google Scholar 

  21. Etorki AM, Kammashi MA, Elhabbat MS, Shaban IS (2017) Application of polyaniline nanoparticles modified screen printed carbon electrode as a sensor for determination of Hg(II) in environmental samples. J Environ Anal Toxicol 7:471 6. https://doi.org/10.4172/2161-0525.1000471

  22. Chen L, Su ZH, He XH, Liu Y, Qin C, Zhou YP, Li Z, Wang LH, Xie QJ, Yao SZ (2012) Square wave anodic stripping voltammetric determination of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy carbon electrode. Electrochem Commun 15:34–37. https://doi.org/10.1016/j.elecom.2011.11.021

    Article  CAS  Google Scholar 

  23. Kumar P, Joseph A, Ramamurthy PC, Subramanian S (2012) Lead ion sensor with electrodes modified by imidazole-functionalized polyaniline. Microchim Acta 177:317–323. https://doi.org/10.1007/s00604-012-0787-4

    Article  CAS  Google Scholar 

  24. Majid S, El Rhazi M, Amine A, Curulli A, Palleschi G (2003) Carbon paste electrode bulk-modified with the conducting polymer poly(1,8-diaminonaphthalene): application to lead determination. Microchim Acta 143:195–204. https://doi.org/10.1007/s00604-003-0058-5

    Article  CAS  Google Scholar 

  25. Gupta B, Prakash R (2012) Interfacial polymerization of polyanthranilic acid: morphology controlled synthesis. Macromol Chem Phys 213:1457–1464. https://doi.org/10.1002/macp.201200152

    Article  CAS  Google Scholar 

  26. Ranganathan S, Raju P, Arunachalam V, Krishnamoorty G, Ramadoss M, Arumainathan S, Vengidusamy N (2012) Poly(anthranilic acid) microspheres: synthesis, characterization and their electrocatalytic properties. Bull Korean Chem Soc 33:1919–1924. https://doi.org/10.5012/bkcs.2012.33.6.1919

    Article  CAS  Google Scholar 

  27. Khalil AA, Shaaban AF, Azab MM, Mahmoud AA, Metwally AM (2013) Synthesis, characterization and morphology of polyanthranilic acid micro- and nanostructures. J Polym Res 20:142 10. https://doi.org/10.1007/s10965-013-0142-4

  28. Kavitha B, Prabakar K, Siva Kumar K, Srinivasu D, Srinivas Ch, Aswal VK, Siriguri V, Narsimlu N (2012) Spectroscopic studies of nano size crystalline conducting polyaniline. IOSR-JAC 2:16–19. https://doi.org/10.9790/5736-0211619

    Article  CAS  Google Scholar 

  29. Ramamurthy PC, Mallya AN, Joseph A, Harrell WR, Gregory RV (2012) Synthesis and characterization of high molecular weight polyaniline for organic electronic applications. Polym Eng Sci 52:1821–1830. https://doi.org/10.1002/pen.23096

    Article  CAS  Google Scholar 

  30. Patra S, Munichandraiah N (2005) Insoluble poly(anthranilic acid) confined in Nafion membrane by chemical and electrochemical polymerization of anthranilic acid. Synth Met 150:285–290. https://doi.org/10.1016/j.synthmet.2005.03.001

    Article  CAS  Google Scholar 

  31. Dash MP, Tripathy M, Sasmal A, Mohanty GC, Nayak PL (2010) Poly(anthranilic acid)/multi-walled carbon nanotube composites: spectral, morphological, and electrical properties. J Mater Sci 45:3858–3865. https://doi.org/10.1007/s10853-010-4441-4

    Article  CAS  Google Scholar 

  32. Sophia IA, Gopu G, Vedhi C (2012) Synthesis and characterization of poly anthranilic acid metal nanocomposites. OJSTA 1:1–8. https://doi.org/10.4236/ojsta.2012.11001

    Article  CAS  Google Scholar 

  33. Golshaei R, Guler Z, Ünsal C, Sezai Sarac A (2015) In situ spectroscopic and electrochemical impedance study of gold/poly (anthranilic acid) core/shell nanoparticles. Eur Polym J 66:502–512. https://doi.org/10.1016/j.eurpolymj.2015.03.009

    Article  CAS  Google Scholar 

  34. Gupta B, Chauhan DS, Prakash R (2010) Controlled morphology of conducting polymers: formation of nanorods and microspheres of polyindole. Mater Chem Phys 120:625–630. https://doi.org/10.1016/j.matchemphys.2009.12.026

    Article  CAS  Google Scholar 

  35. Sonkusare AG, Tyagi S, Kumar R, Mishra S (2017) Room temperature ammonia gas sensing using polyaniline nanoparticles based sensor. Int J Mater Sci 12(283–291):ISSN 0973-4589

    Google Scholar 

  36. Bhadra S, Khastgir D (2008) Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym Test 27:851–857. https://doi.org/10.1016/j.polymertesting.2008.07.002

    Article  CAS  Google Scholar 

  37. Le TH, Kim YK, Yoon HS (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9:150 32. https://doi.org/10.3390/polym9040150

  38. Li WJ, Yao XZ, Guo Z, Liu JH, Huang XJ (2015) Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J Electroanal Chem 749:75–82. https://doi.org/10.1016/j.jelechem.2015.04.038

    Article  CAS  Google Scholar 

  39. Liu FM, Zhang Y, Yin W, Hou CJ, Huo DQ, He B, Qian LL, Fa HB (2017) A high-selectivity electrochemical sensor for ultra-trace lead (II) detection based on a nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core-shell nanoparticles. Sens Actuator B 242:889–896. https://doi.org/10.1016/j.snb.2016.09.167

    Article  CAS  Google Scholar 

  40. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–25. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  41. Joseph A, Subramanian S, Ramamurthy PC, Sampath S, Kumar RV, Schwandt C (2014) Iminodiacetic acid functionalized polypyrrole modified electrode as Pb(II) sensor: synthesis and DPASV studies. Electrochim Acta 137:557–563. https://doi.org/10.1016/j.electacta.2014.06.040

    Article  CAS  Google Scholar 

  42. Hu CG, Wu KB, Dai X, Hu SS (2003) Simultaneous determination of lead(II) and cadmium(II) at a diacetyldioxime modified carbon paste electrode by differential pulse stripping voltammetry. Talanta 60:17–24. https://doi.org/10.1016/S0039-9140(03)00116-4

    Article  CAS  PubMed  Google Scholar 

  43. Vázquez MD, Tascón ML, Debán L (2006) Determination of Pb(II) with a dithizone-modified carbon paste electrode. J Environ Sci Health A 41:2735–2746. https://doi.org/10.1080/10934520600966433

    Article  CAS  Google Scholar 

  44. Shams E, Alibeygi F, Torabi R (2006) Determination of nanomolar concentrations of Pb(II) using carbon paste electrode modified with zirconium phosphated amorphous silica. Electroanalysis 18:773–778. https://doi.org/10.1002/elan.200503448

    Article  CAS  Google Scholar 

  45. Sun D, Wan CD, Li G, Wu KB (2007) Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Microchim Acta 158:255–260. https://doi.org/10.1007/s00604-006-0686-7

    Article  CAS  Google Scholar 

  46. Baldrianova L, Svancara I, Sotiropoulos S (2007) Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste mini-electrodes. Anal Chim Acta 599:249–255. https://doi.org/10.1016/j.aca.2007.07.067

    Article  CAS  PubMed  Google Scholar 

  47. Ghiaci M, Rezaei B, Kalbasi RJ (2007) High selective SiO2-Al2O3 mixed-oxide modified carbon paste electrode for anodic stripping voltammetric determination of Pb(II). Talanta 73:37–45. https://doi.org/10.1016/j.talanta.2007.02.026

    Article  CAS  PubMed  Google Scholar 

  48. Wang N, Dong XD (2008) Stripping voltammetric determination of Pb(II) and Cd(II) based on the multiwalled carbon nanotubes-Nafion-bismuth modified glassy carbon electrodes. Anal Lett 41:1267–1278. https://doi.org/10.1080/00032710802052817

    Article  CAS  Google Scholar 

  49. Sun D, Sun ZM (2008) Electrochemical determination of Pb2+ using a carbon nanotube/Nafion composite film-modified electrode. J Appl Electrochem 38:1223–1227. https://doi.org/10.1007/s10800-008-9542-2

    Article  CAS  Google Scholar 

  50. Wang ZM, Guo HW, Liu E, Yang GC, Khun NW (2010) Bismuth/polyaniline/glassy carbon electrodes prepared with different protocols for stripping voltammetric determination of trace Cd and Pb in solutions having surfactants. Electroanalysis 22:209–215. https://doi.org/10.1002/elan.200900251

    Article  CAS  Google Scholar 

  51. Ensafi AA, Nazari Z, Fritsch I (2012) Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(II), cadmium(II) and zinc(II) ions using 1,4-benzoquinone as an alternative pumping species. Analyst 137:424–431. https://doi.org/10.1039/C1AN15700K

    Article  CAS  PubMed  Google Scholar 

  52. Yola ML, Atar N, Qureshi MS, Üstündağ Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sens Actuator B 171–172:1207–1215. https://doi.org/10.1016/j.snb.2012.06.082

    Article  CAS  Google Scholar 

  53. Zhu L, Xu LL, Huang BZ, Jia NM, Tan L, Yao SZ (2014) Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477. https://doi.org/10.1016/j.electacta.2013.10.209

    Article  CAS  Google Scholar 

  54. Vu HD, Nguyen LH, Nguyen TD, Nguyen HB, Nguyen TL, Tran DL (2015) Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 21:571–578. https://doi.org/10.1007/s11581-014-1199-8

    Article  CAS  Google Scholar 

  55. Ribeiro LF, Masini JC (2014) Automated determination of Cu(II), Pb(II), Cd(II) and Zn(II) in environmental samples by square wave voltammetry exploiting sequential injection analysis and screen printed electrodes. Electroanalysis 26:2754–2763. https://doi.org/10.1002/elan.201400462

    Article  CAS  Google Scholar 

  56. Seenivasan R, Chang WJ, Gunasekaran S (2015) Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl Mater Interfaces 7:15935–15943. https://doi.org/10.1021/acsami.5b03904

    Article  CAS  PubMed  Google Scholar 

  57. Salih FE, Ouarzane A, El Rhazi M (2017) Electrochemical detection of lead (II) at bismuth/poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arab J Chem 10:596–603. https://doi.org/10.1016/j.arabjc.2015.08.021

    Article  CAS  Google Scholar 

  58. Oularbi L, Turmine M, El Rhazi M (2017) Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers. J Solid State Electrochem 21:3289–3300. https://doi.org/10.1007/s10008-017-3676-2

    Article  CAS  Google Scholar 

  59. Ourari A, Tennah F, Ruíz-Rosas R, Aggoun D, Morallón E (2018) Bentonite modified carbon paste electrode as a selective electrochemical sensor for the detection of cadmium and lead in aqueous solution. Int J Electrochem Sci 13:1683–1699. https://doi.org/10.20964/2018.02.35

Download references

Acknowledgements

The authors express their gratitude to the SARD scheme of the Kerala State Council for Science, Technology, and Environment for the procurement of equipment at the host institution, Newman College, Thodupuzha. One of the authors, EVV, is grateful for the receipt of a DST-SERB fellowship.

Funding

The funding for this work was obtained from the Selective Augmentation of Research and Development (SARD) scheme of the Kerala State Council for Science, Technology, and Environment (KSCSTE) (002/SARD/2015/KSCSTE) and from the Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST) (EMR/2016/003755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Joseph.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 565 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, E.V., Thomas, B., Schwandt, C. et al. Polyanthranilic acid microspheres as an active material for electrochemical detection of sub-picomolar lead ion concentrations in aqueous media. Ionics 28, 4461–4470 (2022). https://doi.org/10.1007/s11581-022-04638-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04638-9

Keywords

Navigation