Skip to main content

Advertisement

Log in

Polyrotaxane-based electrolyte with excellent thermal stability for quasi-solid lithium metal batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Despite the high-energy densities, the safety problem of thermal runaway in lithium-ion batteries (LIBs) severely hinders their further application. Therefore, as an essential part of LIBs, the separator should ideally have good thermal stability at high temperatures. Here, a novel polyrotaxane (PR)-based gel polymer electrolyte (GPE) with good thermal stability is made by a simple solution casting method. The thermal shrinkage of the PR is less than 20% even heated at 200 °C; in contrast, the commercial Celgard 2400 separator undergoes dramatic deformation above 140 °C. The gel polymer electrolyte presents excellent compatibility in the cells of LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathode. The cell composed of Li/GPE/LiFePO4 presents good discharge performance and excellent stored performance. The cell composed of Li/GPE/LiNi0.5Mn0.3Co0.2O2 presents excellent capacity retention of 85.9% in 300 cycles while discharging at the 0.5 C rate. This GPE is promising to be applied to Li metal batteries with high safety and good cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu J, Chen Z, Pan F, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev 1:35–53. https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  2. Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y (2019) Alkali-metal anodes: from lab to market. Joule 3:2334–2363. https://doi.org/10.1016/j.joule.2019.07.027

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  4. Ma S, Lin H, Yang L, Tong Q, Pan F, Weng J, Zheng S (2019) High thermal stability and low impedance polypropylene separator coated with aluminum phosphate. Electrochim Acta 320:134528. https://doi.org/10.1016/j.electacta.2019.07.039

    Article  CAS  Google Scholar 

  5. Song Y, Yang L, Zhao W, Wang Z, Zhao Y, Wang Z, Zhao Q, Liu H, Pan F (2019) Solid-state electrolytes: revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv Energy Mater 9:1970076. https://doi.org/10.1002/aenm.201900671

    Article  CAS  Google Scholar 

  6. Wang K, Yang L, Wang Z, Zhao Y, Wang Z, Han L, Song Y, Pan F (2018) Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chem Commun 54:13060–13063. https://doi.org/10.1039/c8cc07476c

    Article  CAS  Google Scholar 

  7. Wang Z, Wang Z, Yang WH, Song Y, Han L, Yang K, Hu J, Chen H, Pan F (2018) Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 49:580–587. https://doi.org/10.1016/j.nanoen.2018.04.076

    Article  CAS  Google Scholar 

  8. Yang L, Wang Z, Feng Y, Tan R, Zuo Y, Gao R, Zhao Y, Han L, Wang Z, Pan F (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1701437. https://doi.org/10.1002/aenm.201701437

    Article  CAS  Google Scholar 

  9. Jaumaux P, Liu Q, Zhou D, Xu X, Wang G (2020) Deep eutectic solvent-based self-healing polymer electrolyte for safe and long-life lithium metal batteries. Angew Chem Int Ed 59:9134–9142. https://doi.org/10.1002/anie.202001793

    Article  CAS  Google Scholar 

  10. Gong S, Huang Y, Cao H, Lin Y, Li Y, Tang S, Wang M, Li X (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307:624–633. https://doi.org/10.1016/j.jpowsour.2016.01.030

    Article  CAS  Google Scholar 

  11. Wu J, Wang X, Liu Q, Wang S, Zhou D, Kang F (2021) A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat Commun 12:5746. https://doi.org/10.1038/s41467-021-26073-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ren W, Ding C, Fu X, Huang Y (2021) Advanced gel polymer electrolytes for safe and durable lithium metal batteries: challenges, strategies, and perspectives. Energy Stor Mater 34:515–535. https://doi.org/10.1016/j.ensm.2020.10.018

    Article  Google Scholar 

  13. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009

    Article  CAS  Google Scholar 

  14. Zhu M, Wu J, Wang Y, Song M, Long L, Siyal SH, Yang X, Sui G (2019) Recent advances in gel polymer electrolyte for high-performance lithium batteries. J Energy Chem 37:126–142. https://doi.org/10.1016/j.jechem.2018.12.013

    Article  Google Scholar 

  15. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. https://doi.org/10.1016/s0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  16. Zhu L, Li J, Jia Y, Zhu P, Jing M, Yao S, Shen X, Li S, Tu F (2020) Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte. Int J Energy Res 44(13):10168–10178. https://doi.org/10.1002/er.5632

    Article  CAS  Google Scholar 

  17. Xue Z, Xie D, He X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A3:19218–19253. https://doi.org/10.1039/c5ta03471j

    Article  Google Scholar 

  18. Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L (2016) Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A4:10070–10083. https://doi.org/10.1039/c6ta02907h

    Article  Google Scholar 

  19. Zhang H, Zhang J, Ma J, Xu G, Dong T, Cui G (2019) Polymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem Energy Rev 2:128–148. https://doi.org/10.1007/s41918-018-00027-x

    Article  CAS  Google Scholar 

  20. Waqas M, Ali S, Feng C, Chen D, Han J, He W (2019) Recent development in separators for high-temperature lithium-ion batteries. Small 15:1901689. https://doi.org/10.1002/smll.201901689

    Article  CAS  Google Scholar 

  21. Ali S, Tan C, Waqas M, Lv W, Wei Z, Wu S, Boateng B, Liu J, Ahmed J, Xiong J, Goodenough JB, He W (2018) Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries. Adv Mater Inter 5:1701147. https://doi.org/10.1002/admi.201701147

    Article  CAS  Google Scholar 

  22. Liu Y, Qiao Y, Zhang Y, Yang Z, Gao T, Kirsch D, Liu B, Song J, Yang B, Hu L (2018) 3D printed separator for the thermal management of high-performance Li metal anodes. Energy Stor Mater 12:197–203. https://doi.org/10.1016/j.ensm.2017.12.019

    Article  Google Scholar 

  23. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038–10069. https://doi.org/10.1039/c6ta02621d

    Article  CAS  Google Scholar 

  24. Harada A, Okada M, Kawaguchi Y, Kamachi M (1999) Macromolecular recognition: new cyclodextrin polyrotaxanes and molecular tubes. Polym Adv Technol 10:3–12. https://doi.org/10.1002/(sici)1099-1581(199901/02)10:1/2%3c3::aid-pat759%3e3.0.co;2-s

    Article  CAS  Google Scholar 

  25. Harada A, Li J, Kamachi M, Kitagawa Y, Katsube Y (1997) Structures of polyrotaxane models. Carbohydr Res 305:127–129. https://doi.org/10.1016/s0008-6215(97)00276-0

    Article  CAS  Google Scholar 

  26. Choi S, Kwon TW, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium-ion batteries. Science 357:279–283. https://doi.org/10.1126/science.aal4373

    Article  CAS  PubMed  Google Scholar 

  27. Imholt L, Dörr TS, Zhang P, Ibing L, Cekic-Laskovic I, Winter M, Brunklaus G (2019) Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J Power Sources 409:148–158. https://doi.org/10.1016/j.jpowsour.2018.08.077

    Article  CAS  Google Scholar 

  28. Chen G, Xu Y, Shi T, Wu X (2019) Preparation and properties of polyacrylonitrile/polyethylene glycol composite fibers phase change materials by centrifugal spinning. Mater Res Express 6:095502. https://doi.org/10.1088/2053-1591/ab2d0a

    Article  CAS  Google Scholar 

  29. Dognani G, Hadi P, Ma H, Cabrera FC, Job AE, Agostini DLS, Hsiao BS (2019) Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chem Eng J 372:341–351. https://doi.org/10.1016/j.cej.2019.04.154

    Article  CAS  Google Scholar 

  30. Senra JD, Malta LFB, Costa MEHM, Michel RC, Aguiar LCS, Simas ABC, Antunes OAC (2009) Hydroxypropyl-α-cyclodextrin-capped palladium nanoparticles: active scaffolds for efficient carbon-carbon bond forming cross-couplings in water. Adv Synth Catal 351(14–15):2411–2422. https://doi.org/10.1002/adsc.200900348

    Article  CAS  Google Scholar 

  31. Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and ɑ-cyclodextrin. Macromolecules 23(10):2821–2823. https://doi.org/10.1021/ma00212a039

    Article  CAS  Google Scholar 

  32. Lin Y, Ito K, Yokoyama H (2018) Solid polymer electrolyte based on crosslinked polyrotaxane. Polymer 136:121–127. https://doi.org/10.1016/j.polymer.2017.12.046

    Article  CAS  Google Scholar 

  33. Hu Z, Chen J, Guo Y, Zhu J, Qu X, Niu W, Liu X (2020) Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. J Membr Sci 599:117827. https://doi.org/10.1016/j.memsci.2020.117827

    Article  CAS  Google Scholar 

  34. Ahn JH, You T, Lee S, Esken D, Dehe D, Huang Y, Kim D (2020) Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety. J Power Sources 472:228519. https://doi.org/10.1016/j.jpowsour.2020.228519

    Article  CAS  Google Scholar 

  35. Zhang Q, Liu Y, Ma J, Zhang M, Ma X, Chen F (2019) Preparation and characterization of polypropylene supported electrospun POSS-(C3H6Cl)8/PVDF gel polymer electrolytes for lithium-ion batteries. Colloids Surf A 580:123750. https://doi.org/10.1016/j.colsurfa.2019.123750

    Article  CAS  Google Scholar 

  36. Forbey SJ, Divoux GM, Moore KE, Moore RB (2015) Cross-linked electrospun poly(ethylene oxide) fiber mats as structured polymer-gel electrolyte. ECS Trans 66(35):1–15. https://doi.org/10.1149/06635.0001ecst

    Article  CAS  Google Scholar 

  37. Fan Z, Ding B, Zhang T, Lin Q, Malgras V, Wang J, Dou H, Zhang X, Yamauchi Y (2019) Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition. Small 15(46):1903952. https://doi.org/10.1002/smll.201903952

    Article  CAS  Google Scholar 

  38. Yu J, He Y, Zou S, Na B, Liu H, Liu J, Li H (2020) Redox-active manganese dioxide@polypropylene hybrid separators for advanced lithium ion batteries. Appl Surf Sci 508:144757. https://doi.org/10.1016/j.apsusc.2019.144757

    Article  CAS  Google Scholar 

  39. Liu B, Huang Y, Cao H, Zhao L, Huang Y, Song A, Lin Y, Li X, Wang M (2018) A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries. J Membr Sci 545:140–149. https://doi.org/10.1016/j.memsci.2017.09.077

    Article  CAS  Google Scholar 

  40. Liu B, Huang Y, Zhao L, Huang Y, Song A, Lin Y, Wang M, Li X, Cao H (2018) A novel non-woven fabric supported gel polymer electrolyte based on poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Membr Sci 564:62–72. https://doi.org/10.1016/j.memsci.2018.07.014

    Article  CAS  Google Scholar 

  41. Guan X, Wu Q, Zhang X, Guo X, Li C, Xu J (2020) In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries. Chem Eng J 382:122935. https://doi.org/10.1016/j.cej.2019.122935

    Article  CAS  Google Scholar 

  42. Fu X, Shang C, Yang M, Akinoglu EM, Wang X, Zhou G (2020) An ion-conductive separator for high safety Li metal batteries. J Power Sources 475:228687. https://doi.org/10.1016/j.jpowsour.2020.228687

    Article  CAS  Google Scholar 

  43. Chai J, Liu Z, Ma J, Wang J, Liu X, Liu H, Zhang J, Cui G, Chen L (2017) In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci 4(2):1600377. https://doi.org/10.1002/advs.201600377

    Article  CAS  Google Scholar 

  44. Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Wang M, Li X (2017) Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim Acta 245:981–992. https://doi.org/10.1016/j.electacta.2017.05.176

    Article  CAS  Google Scholar 

  45. Jie J, Liu Y, Cong L, Zhang B, Lu W, Zhang X, Liu J, Xie H, Sun L (2020) High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J Energ Chem 49:80–88. https://doi.org/10.1016/j.jechem.2020.01.019

    Article  Google Scholar 

  46. Gao H, Huang Y, Zhang Z, Huang J, Li C, (2020) Li6.7La3Zr1.7Ta0.15Nb0.15O12 enhanced UV-cured poly(ethylene oxide)-based composite gel polymer electrolytes for lithium metal batteries. Electrochim Acta 360:137014 https://doi.org/10.1016/j.electacta.2020.137014

  47. Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman ED, Hu L (2017) Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett 17(1):565–571. https://doi.org/10.1021/acs.nanolett.6b04695

    Article  CAS  PubMed  Google Scholar 

  48. Xie Z, Wu Z, An X, Yoshida A, Wang Z, Hao X, Abudula A, Guan G (2019) Bifunctional ionic liquid and conducting ceramic co-assisted solid polymer electrolyte membrane for quasi-solid-state lithium metal batteries. J Membr Sci 586:122–129. https://doi.org/10.1016/j.memsci.2019.05.066

    Article  CAS  Google Scholar 

  49. Yang X, Jiang M, Gao X, Bao D, Sun Q, Holmes N, Duan H, Mukherjee S, Adair K, Zhao C, Liang J, Li W, Li J, Liu Y, Huang H, Zhang L, Lu S, Lu Q, Li R, Singh CV, Sun X (2020) Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group? Energy Environ Sci 13:1318–1325. https://doi.org/10.1039/d0ee00342e

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fujian Provincial Science and Technology Department’s University Industry Cooperation Project (grant nos. 2016H6006, 2020H6010) and Fuzhou Science and Technology Bureau Project (grant no. 2017-G-68).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Tong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Z., Tong, Q. et al. Polyrotaxane-based electrolyte with excellent thermal stability for quasi-solid lithium metal batteries. Ionics 28, 3623–3634 (2022). https://doi.org/10.1007/s11581-022-04610-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04610-7

Keywords

Navigation