Skip to main content

Advertisement

Log in

Construction of light-weight and flexible vanadium nitride coated graphite paper electrodes for supercapacitors

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The energy storage devices for flexible/wearable and portable electronics are on immediate requirement demanding for high-performance flexible supercapacitors. Nevertheless, the real-time application of advanced electronics necessitates supercapacitors to own admirable mechanical properties to endure rigorous straining environments. Also, it is necessary to reduce the mass and volume of the whole device. Therefore, constructing a high-performance flexible supercapacitor based on better electrochemical and significant mechanical properties is still a formidable task. Herein, we have successfully fabricated a vanadium nitride thin film electrode onto the flexible, thin, and light-weight graphite paper substrate via reactive direct current (DC) magnetron sputtering method. The as-fabricated graphite sheets current collector is flexible, thin, light-weight, electrically conductiviting, cost-effective, and easy to fabricate. Furthermore, the as-prepared binder-free flexible negative electrode displayed better supercapacitor performance in terms of specific capacitance and cycle stability. The negative electrode exhibited an areal capacitance of 91 mF cm−2 and better cycling stability with > 64% capacitance retention after 2000 cycles. Moreover, the flexible hybrid supercapacitor is fabricated with NiCo hydroxide and VN films and showed a maximum energy density of 1.80 μWh cm−2 and power density of 387.5 μW cm−2 and good stability. These results propose that the fabricated electrode has great prospective as a power source for flexible, wearable, and portable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Karthick SN, Hemalatha KV, Suresh Kannan B, Manik Clinton F, Akshaya S, H.-J (2019) Kim, Dye-sensitized solar cells: History, components, configuration, and working principle, interfacial engineering in functional materials for dye‐sensitized solar cells, 1st edn John Wiley & Sons, Inc, pp 1-16.

  2. Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A (2020) Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-micro lett 12:85

    Article  CAS  Google Scholar 

  3. Balasingam SK, Sivalingam Nallathambi K, Abdul Jabbar MH, Ramadoss A, Kamaraj SK, Kundu M (2019) Nanomaterials for electrochemical energy conversion and storage technologies. J Nanomater 2019:1089842

    Article  CAS  Google Scholar 

  4. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423

    Article  CAS  Google Scholar 

  5. Kumar SA, Mohanty A, Saravanakumar B, Mohanty S, Nayak SK, Ramadoss A (2020) Three-dimensional Bi2O3/Ti microspheres as an advanced negative electrode for hybrid supercapacitors. Chem Commun 56:12973–12976

    Article  CAS  Google Scholar 

  6. Guru Prakash N, Dhananjaya M, Lakshmi Narayana A, Hussain OM (2019) One-dimensional MoO3/Pd nanocomposite electrodes for high performance supercapacitors. Mater Res Express 6:085543

    Article  CAS  Google Scholar 

  7. Balasingam SK, Kundu M, Balakrishnan B, Kim H-J, Svensson AM, Jayasayee K (2019) Hematite microdisks as an alternative anode material for lithium-ion batteries. Mater Lett 247:163–166

    Article  CAS  Google Scholar 

  8. Yao B, Li M, Zhang J, Zhang L, Song Y, Xiao W, Cruz A, Tong Y, Li Y (2019) TiN paper for ultrafast-charging supercapacitors. Nano-Micro Lett 12:3

    Article  CAS  Google Scholar 

  9. Dubal DP, Abdel-Azeim S, Chodankar NR, Han Y-K (2019) Molybdenum nitride nanocrystals anchored on phosphorus-incorporated carbon fabric as a negative electrode for high-performance asymmetric pseudocapacitor. IScience 16:50–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma M, Shi Z, Li Y, Yang Y, Zhang Y, Wu Y, Zhao H, Xie E (2020) High-performance 3 V “water in salt” aqueous asymmetric supercapacitors based on VN nanowire electrodes. J Mater Chem A 8:4827–4835

    Article  CAS  Google Scholar 

  11. Wang L, Zhang C, Jiao X, Yuan Z (2019) Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res 12:1129–1137

    Article  CAS  Google Scholar 

  12. Luo Y, Zhang QE, Hong W, Xiao Z, Bai H (2018) A high-performance electrochemical supercapacitor based on a polyaniline/reduced graphene oxide electrode and a copper(ii) ion active electrolyte. Phys Chem Chem Phys 20:131–136

    Article  CAS  Google Scholar 

  13. Kuzhandaivel H, Manickam S, Balasingam SK, Franklin MC, Kim H-J, Nallathambi KS (2021) Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors. New J Chem 45:4101–4110

    Article  CAS  Google Scholar 

  14. Choi D, Blomgren GE, Kumta PN (2006) Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv Mater 18:1178–1182

    Article  CAS  Google Scholar 

  15. Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J (2013) Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 25:5091–5097

    Article  CAS  PubMed  Google Scholar 

  16. Djire A, Pande P, Deb A, Siegel JB, Ajenifujah OT, He L, Sleightholme AE, Rasmussen PG, Thompson LT (2019) Unveiling the pseudocapacitive charge storage mechanisms of nanostructured vanadium nitrides using in-situ analyses. Nano Energy 60:72–81

    Article  CAS  Google Scholar 

  17. Robert K, Douard C, Demortière A, Blanchard F, Roussel P, Brousse T, Lethien C (2018) On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porosities. Adv Mater Technol 3:1800036

    Article  CAS  Google Scholar 

  18. Asbani B, Robert K, Roussel P, Brousse T, Lethien C (2021) Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films. Energy Storage Mater 37:207–214

    Article  Google Scholar 

  19. Liu Y, Wu Q, Liu L, Manasa P, Kang L, Ran F (2020) Vanadium nitride for aqueous supercapacitors: a topic review. J Mater Chem A 8:8218–8233

    Article  CAS  Google Scholar 

  20. Le Calvez E, Yarekha D, Fugère L, Robert K, Huvé M, Marinova M, Crosnier O, Lethien C, Brousse T (2021) Influence of ion implantation on the charge storage mechanism of vanadium nitride pseudocapacitive thin films. Electrochem Commun 125:107016

    Article  CAS  Google Scholar 

  21. He T, Zhao Q, Wu Q, Zhang J, Ran F (2021) Surfactant induced self-assembly to prepare a vanadium nitride/N, S co-doped carbon high-capacitance anode material. Chem Commun 57:10246–10249

    Article  CAS  Google Scholar 

  22. Robert K, Stiévenard D, Deresmes D, Douard C, Iadecola A, Troadec D, Simon P, Nuns N, Marinova M, Huvé M, Roussel P, Brousse T, Lethien C (2020) Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy Environ Sci 13:949–957

    Article  CAS  Google Scholar 

  23. Liu Y, Liu L, Kang L, Ran F (2022) Energy storage mechanism of vanadium nitride via intercalating different atomic radius for expanding interplanar spacing, Energy Environ Mater. https://doi.org/10.1002/eem2.12188

  24. Yang Y, Wang Y, Zhao L, Liu Y, Ran F (2022) Visualizing nucleation and growth process of vanadium-supramolecular nanoribbons self-assembled by rapid cooling method towards high-capacity vanadium nitride anode materials, Adv Energy Mater, n/a 2103158.

  25. Hanumantha PJ, Datta MK, Kadakia KS, Hong DH, Chung SJ, Tam MC, Poston JA, Manivannan A, Kumta PN (2013) A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications. J Electrochem Soc 160:A2195–A2206

    Article  CAS  Google Scholar 

  26. Wu Y, Ran F (2017) Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J Power Sources 344:1–10

    Article  CAS  Google Scholar 

  27. Tan Y, Liu Y, Tang Z, Wang Z, Kong L, Kang L, Liu Z, Ran F (2018) Concise N-doped carbon nanosheets/vanadium nitride nanoparticles materials via intercalative polymerization for supercapacitors. Sci Rep 8:2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Shen K, Liu Y, Tan Y, Zhao X, Wu J, Niu X, Ran F (2016) Novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Letters 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Yang Y, Zhao X, Tan Y, Liu Y, Wang Z, Ran F (2018) A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett 10:63

    Article  CAS  Google Scholar 

  31. Zhao J, Li C, Zhang Q, Zhang J, Wang X, Lin Z, Wang J, Lv W, Lu C, Wong C-P, Yao Y (2017) An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J Mater Chem A 5:6928–6936

    Article  CAS  Google Scholar 

  32. Ramadoss A, Kang K-N, Ahn H-J, Kim S-I, Ryu S-T, Jang J-H (2016) Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers. J Mater Chem A 4:4718–4727

    Article  CAS  Google Scholar 

  33. Zhao Y, Xing G, Zhao YN, Yu C, Liu Q, Zhao C, Li Y (2020) Graphene aerogel modified with a vanadium nitride film by a sputtering method for use in high-performance supercapacitors. Mater Lett 261:127085

    Article  CAS  Google Scholar 

  34. Balamurugan J, Karthikeyan G, Thanh TD, Kim NH, Lee JH (2016) Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors. J Power Sources 308:149–157

    Article  CAS  Google Scholar 

  35. Achour A, Lucio-Porto R, Solaymani S, Islam M, Ahmad I, Brousse T (2018) Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability. J Mater Sci: Mater Electron 29:13125–13131

    CAS  Google Scholar 

  36. Ouldhamadouche N, Achour A, Lucio-Porto R, Islam M, Solaymani S, Arman A, Ahmadpourian A, Achour H, Le Brizoual L, Djouadi MA, Brousse T (2018) Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J Mater Sci Technol 34:976–982

    Article  CAS  Google Scholar 

  37. Begum B, Bilal S, Shah AU, Röse P (2021) Physical, chemical, and electrochemical properties of redox-responsive polybenzopyrrole as electrode material for faradaic energy storage. Polymers 13:2883

  38. Liu Y, Jiang SP, Shao Z (2020) Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater Today Adv 7:100072

    Article  Google Scholar 

  39. Balasingam SK, Lee JS, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans 44:15491–15498

    Article  CAS  PubMed  Google Scholar 

  40. Achour A, Lucio-Porto R, Chaker M, Arman A, Ahmadpourian A, Soussou MA, Boujtita M, Le Brizoual L, Djouadi MA, Brousse T (2017) Titanium vanadium nitride electrode for micro-supercapacitors. Electrochem Commun 77:40–43

    Article  CAS  Google Scholar 

  41. Zhou X, Chen H, Shu D, He C, Nan J (2009) Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J Phys Chem Solids 70:495–500

    Article  CAS  Google Scholar 

  42. Bondarchuk O, Morel A, Bélanger D, Goikolea E, Brousse T, Mysyk R (2016) Thin films of pure vanadium nitride: evidence for anomalous non-faradaic capacitance. J Power Sources 324:439–446

    Article  CAS  Google Scholar 

  43. Chen B, Han L, Li B (2019) Pseudo-capacitance behaviour of reactively sputtered vanadium nitride electrodes deposited at different working pressures: the critical role of surface chemistry. Mater Chem Phys 236:121820

    Article  CAS  Google Scholar 

  44. Morel A, Borjon-Piron Y, Porto RL, Brousse T, Bélanger D (2016) Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J Electrochem Soc 163:A1077–A1082

    Article  CAS  Google Scholar 

  45. Bouhtiyya S, Lucio Porto R, Laïk B, Boulet P, Capon F, Pereira-Ramos JP, Brousse T, Pierson JF (2013) Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scr Mater 68:659–662

    Article  CAS  Google Scholar 

  46. Wang S, Zhang L, Sun C, Shao Y, Wu Y, Lv J, Hao X (2016) Gallium nitride crystals: novel supercapacitor electrode materials. Adv Mater 28:3768–3776

    Article  CAS  PubMed  Google Scholar 

  47. Achour A, Chaker M, Achour H, Arman A, Islam M, Mardani M, Boujtita M, Le Brizoual L, Djouadi MA, Brousse T (2017) Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. J Power Sources 359:349–354

    Article  CAS  Google Scholar 

  48. Achour A, Porto RL, Soussou M-A, Islam M, Boujtita M, Aissa KA, Le Brizoual L, Djouadi A, Brousse T (2015) Titanium nitride films for micro-supercapacitors: effect of surface chemistry and film morphology on the capacitance. J Power Sources 300:525–532

    Article  CAS  Google Scholar 

  49. Haye E, Achour A, Guerra A, Moulaï F, Hadjersi T, Boukherroub R, Panepinto A, Brousse T, Pireaux J-J, Lucas S (2019) Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle. Electrochim Acta 324:134890

    Article  CAS  Google Scholar 

  50. Wei B, Mei G, Liang H, Qi Z, Zhang D, Shen H, Wang Z (2018) Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors. J Power Sources 385:39–44

    Article  CAS  Google Scholar 

  51. Gao Z, Wu Z, Zhao S, Zhang T, Wang Q (2019) Enhanced capacitive property of HfN film electrode by plasma etching for supercapacitors. Mater Lett 235:148–152

    Article  CAS  Google Scholar 

  52. Durai G, Kuppusami P, Maiyalagan T, Ahila M, Vinothkumar P (2019) Supercapacitive properties of manganese nitride thin film electrodes prepared by reactive magnetron sputtering effect of different electrolytes. Ceram Int 45:17120–17127

    Article  CAS  Google Scholar 

  53. Ting Y-J, Lian K, Kherani N (2019) Fabrication of titanium nitride and molybdenum nitride for supercapacitor electrode application. ECS Trans 35:133–139

    Article  Google Scholar 

Download references

Funding

AR and LSM would like to thank Humboldt Foundation, Germany, for the financial support through Alexander von Humboldt Post-Doctoral Fellowship and also acknowledge the DST-DAAD grant (Ref. No-INT/FRG/DAAD/P-09/2018 and Ref. No. 57389570) for flexible supercapacitors.

Author information

Authors and Affiliations

Authors

Contributions

Ananthakumar Ramadoss: methodology, investigation, conceptualization, data curation, validation, writing — original draft, and funding acquisition. Ankita Mohanty: formal analysis, reviewing, and editing. Gobi Saravanan: resources, Manab Kundu: resources, Sohaila Z. Noby: resources. K. Kirubavathi: resources. K. Selvaraju: formal analysis, supervision, editing, and critical revision. Lukas Schmidt Mende: formal analysis, editing, and critical revision.

Corresponding authors

Correspondence to Ananthakumar Ramadoss or K. Selvaraju.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadoss, A., Mohanty, A., Saravanan, K.G. et al. Construction of light-weight and flexible vanadium nitride coated graphite paper electrodes for supercapacitors. Ionics 28, 2513–2524 (2022). https://doi.org/10.1007/s11581-022-04529-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04529-z

Keywords

Navigation