Skip to main content

Advertisement

Log in

N/S co-doped interconnected 3D carbon frameworks for aqueous and high voltage flexible quasi-solid-state supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Heteroatoms co-doped porous carbon attracts tremendous research interest for electrochemical energy storage applications. We demonstrate herein N/S co-doped 3D carbon frameworks with the large specific surface area through KOH activation in the presence of KSCN by utilizing red bean as the precursor. We found that KSCN can not only act as the N/S sources but also serve as the co-activator to generate nanopores. Benefitting from its large specific surface, hierarchical porosity, and N/S co-doping, the largest specific capacitance can be reached 293.4 F g−1 (at 0.5 A g−1) and satisfactory rate capability of 68% (at 50 A g−1) in 6 M KOH aqueous electrolyte. Encouragingly, a high-energy density achieves to 23.025 Wh kg−1 can be obtained and in Na2SO4/PVA gel electrolyte within the voltage window of 0–1.8 V. The quasi-solid-state supercapacitor could also be connected in series or parallel to further enhance the working voltage or current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raza W, Ali FZ, Raza N, Luo YW, Kim KH, Yang JH, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  2. Xia Y, Mathis TS, Zhao MQ, Anasori B, Dang A, Zhou ZH, Cho H, Gogotsi Y, Yang S (2018) Thickness - independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557:409–412

    Article  CAS  PubMed  Google Scholar 

  3. Bianco A, Chen Y, Frackowiak E, Holzinger M, Koratkar N, Meunier V, Mikhailovsky S, Strano M, Tascon JMD, Terrones M (2020) Carbon science perspective in 2020: current research and future challenges. Carbon 161:373–391

    Article  CAS  Google Scholar 

  4. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storagem. Science 347:1246501

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679

    Article  CAS  Google Scholar 

  6. X.D. Liang, R. Liu, X.L. Wu, Biomass waste-derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous Mesoporous Mater. 2021, 310: 110659.

  7. S.D. Liu, L. Kang, S.C. Jun, Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater. 2021, 2004689

  8. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210–1211

    Article  CAS  PubMed  Google Scholar 

  9. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251

    Article  CAS  PubMed  Google Scholar 

  10. Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Article  CAS  Google Scholar 

  11. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070

    Article  CAS  Google Scholar 

  12. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts Chem Res 49:2796–2806

    Article  CAS  Google Scholar 

  13. Da Silva LM, Cesar R, Moreira CMR, Santos JHM, De Souza LG, Pires BM, Vicentini R, Nunes W, Zanin H (2020) Reviewing the fundamentals of supercapacitor and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Mater 27:555–590

    Article  Google Scholar 

  14. Sun HT, Zhu J, Baumann D, Peng LL, Xu YX, Shakir I, Huang Y, Duan XF (2019) Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater 4:45–60

    Article  Google Scholar 

  15. Ghosh S, Barg S, Jeong SM, Ostrikov K (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitor. Adv Energy Mater 10:2001239

    Article  CAS  Google Scholar 

  16. Chen KF, Song SY, Liu F, Xue DF (2015) Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev 44:6230–6257

    Article  CAS  PubMed  Google Scholar 

  17. Wang XH, Zhou HT, Sheridan E, Walmsley JC, Ren DD, Chen D (2016) Geometrically confined favorable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitor. Energy Environ Sci 9:232–239

    Article  CAS  Google Scholar 

  18. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitor. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  19. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei QL, Lau J, Dunn B (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Article  Google Scholar 

  20. Deng J, Li MM, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854

    Article  CAS  Google Scholar 

  21. Bi H, He X, Zhang H (2021) N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced super capacitance. Renew Energ 170:188–196

    Article  CAS  Google Scholar 

  22. Jamaluddin, Anif, Yuan C (2017) Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys Chem Chem Phys. 19:30381–30392

    Article  PubMed  Google Scholar 

  23. Jia S, Wei J, Meng X (2020) Facile and friendly preparation of N/S Co-doped graphene-like carbon nanosheets with hierarchical pore by molten salt for all-solid-state supercapacitor. Electrochim Acta 331:135338

    Article  CAS  Google Scholar 

  24. Hou J, Jiang K, Tahir M, Wu X, Idrees F, Shen M, Cao C (2017) Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitor. J Power Sources 371:148–155

    Article  CAS  Google Scholar 

  25. He D, Niu J, Dou M, Ji J, Huang Y, Wang F (2017) Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitor. Electrochim Acta 238:310–318

    Article  CAS  Google Scholar 

  26. Li Z, Ahadi K, Jiang K, Ahvazi B, Li P, Anyia AO, Cadien K, Thundat T (2017) Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitor. Nano Res 10:1847–1860

    Article  CAS  Google Scholar 

  27. Pan ZM, Lu ZM, Xu L, Wang DW (2020) A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci 510:9

    Article  CAS  Google Scholar 

  28. Dubey R, Guruvia V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(2):1419–1445

    Article  CAS  Google Scholar 

  29. P. Dixini, B.B. Carvalho, G.R. Gonçalves, et al. Sol–gel synthesis of manganese oxide supercapacitor from manganese recycled from spent Zn–MnO2 batteries using organic acid as a leaching agent. Ionics, 2019: 4381–4392.

  30. Yin X, Li H, Fu Y (2020) Hierarchical core-shell structure of NiCo2O4 nanosheets@Hfc nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem Eng J. 392:124820

    Article  CAS  Google Scholar 

  31. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Transact A Math Phys Eng Sci 362:2477–2512

    Article  CAS  Google Scholar 

  32. Wang DW, Nai JW, Xu L, Sun T (2019) A potassium formate activation strategy for the synthesis of ultrathin graphene-like porous carbon nanosheets for advanced supercapacitor applications. ACS Sustain Chem Eng 7:18901–18911

    Article  CAS  Google Scholar 

  33. Zhou MY, Lin YQ, Xia HY, Wei XR, Yao Y, Wang XN, Wu ZX (2020) A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitor and CO2 capture. Nano-Micro Letters 12:19

    Article  CAS  Google Scholar 

  34. Raj F, Boopathi G, Jaya NV, Kalpana D, Pandurangan A (2020) N S codoped activated mesoporous carbon derived from the Datura metal seed pod as active electrodes for supercapacitor. Diam. Relat. Mater. 102:10

    Article  CAS  Google Scholar 

  35. Faraji M, Soltanahmadi RK, Aydisheh HM et al (2020) 20-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO3-graphite sheet. Ionics 26:3003–3013

    Article  CAS  Google Scholar 

  36. Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M (2017) Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 46:389–414

    Article  CAS  PubMed  Google Scholar 

  37. Ates M, Mizrak I, Kuzgun O et al (2020) Synthesis, characterization, and supercapacitor performances of activated and inactivated rGO/MnO2 and rGO/MnO2/PPy nanocomposites. Ionics 26:1–13

    Article  CAS  Google Scholar 

  38. Ni J, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6:1600278

    Article  CAS  Google Scholar 

  39. Gonzalez A, Goikolea E, AndoniBarrena J, Mysyk R (2016) Review on supercapacitor: technologies and materials. Renew Sust Energ Rev. 58:1189–1206

    Article  CAS  Google Scholar 

  40. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science New York, NY 313:1760–17633

    Article  CAS  Google Scholar 

  41. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer supercapacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  PubMed  Google Scholar 

  42. Segalini J, Daffos B, Taberna PL, Gogotsi Y, Simon P (2010) Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer supercapacitor electrodes. Electrochim Acta 55:7489–7494

    Article  CAS  Google Scholar 

  43. Wu YP, Fang SB, Jiang YY, Holze R (2002) Effects of doped sulfur on electrochemical performance of carbon anode. J Power Sources 108:245–249

    Article  CAS  Google Scholar 

  44. Mondal AK, Kretschmer K, Zhao YF, Liu H, Wang CY, Sun B, Wang GX (2017) Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitor and lithium ion batteries. Chem Eur 23:3683–3690

    Article  CAS  Google Scholar 

  45. Zhou J, Shen HL, Li ZH, Zhang S, Zhao YT, Bi X, Wang YS, Cui HY, Zhuo SP (2016) Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitor. Electrochim Acta 209:557–564

    Article  CAS  Google Scholar 

  46. Guimaraes ATC, Climent MA, de Vera G, Vicente FJ, Rodrigues FT, Andrade C (2011) Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure. Constr Build Mater 25:785–790

    Article  Google Scholar 

  47. Liu SD, Kang L, Zhang J (2021) Unlocking the potential of oxygen-deficient copper-doped Co3O4nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett 6:3011–3019

    Article  CAS  Google Scholar 

  48. Yang H, Zhou J, Wang M et al (2020) From basil seed to flexible supercapacitor: green synthesis of heteroatom-enriched porous carbon by self-gelation strategy. Int J Energy Res 44:4449–4463

    Article  CAS  Google Scholar 

  49. Meng X, Jia S, Mo L (2020) O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for high-performance supercapacitor. J Mater Sci 50:55

    Google Scholar 

  50. Kang L, Zhang MY, Zhang J (2020) Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A 45:24053–24064

    Article  Google Scholar 

  51. Chang B, Wang L, Shi W (2020) In situ self-activation synthesis of binary-heteroatom co-doped 3D coralline-like microporous carbon nanosheets for high-efficient energy storage in a flexible all-solid-state symmetrical supercapacitor. Sustain Energy Fuels 4:2527–2540

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial supports from the National Natural Science Foundation of China (Grant no. 51762001) and the Key Research and Development Program of Ningxia (Grant no. 2020BDE03007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihu Ke or Dewei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3096 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, J., Ke, Y. et al. N/S co-doped interconnected 3D carbon frameworks for aqueous and high voltage flexible quasi-solid-state supercapacitors. Ionics 28, 2377–2388 (2022). https://doi.org/10.1007/s11581-022-04455-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04455-0

Keywords

Navigation