Skip to main content

Advertisement

Log in

Deep learning-driven molecular dynamics simulations of molten carbonates: 1. Local structure and transport properties of molten Li2CO3-Na2CO3 system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In recent years, metal carbonate-based melts have been investigated as the promising heat transfer fluid and thermal energy storage medium for concentrating solar power plants. However, there are some limiting factors for investigating their structural information and properties. As the deep neural network develops, machine learning method is widely used in MD simulations. In this paper, interatomic potential driven by machine learning is developed based on datasets generated by first-principle molecular dynamics simulations in order to research the local structure and properties of molten Li2CO3-Na2CO3 binary salts at target temperatures. The machine learning potential enables higher efficiency and similar accuracy relative to DFT and yields precise descriptions of microstructures and properties. Microstructural evolution is analyzed through partial radial distribution functions. We observed lithium cation exhibits more coordination modes and the strength of Na+ with CO32− is weaker than that of Li+. Further, comparing the inter-ionic partial radial distribution function diagrams of binary melts and those of pure melt, interatomic characteristics were obtained. The evolution of properties calculated by machine learning, including density, self-diffusion coefficients, thermal conductivity, and viscosity over the entire operating temperature range, is documented. The relationships between properties and temperature or properties and the fraction of Li2CO3 were explored by the trained machine learning potential. This work exhibits a thorough understanding about the local structure and property of Li2CO3-Na2CO3 melt and reveals the accuracy of machine learning potential on molten binary carbonates for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Ortiz C (2021) Thermochemical energy storage based on carbonates: a brief overview. Energies 14(14):4336. https://doi.org/10.3390/en14144336

    Article  Google Scholar 

  2. Fernandez G, Vrabec J, Hasse H (2004) A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids. Fluid Phase Equilib 221(1–2):157–163

    Article  CAS  Google Scholar 

  3. Petravic J, Delhommelle J (2004) Nonequilibrium molecular dynamics simulations of molten sodium chloride. Int J Thermophys 25(5):1375–1393

    Article  CAS  Google Scholar 

  4. Kowsari M, Alavi S, Ashrafizaadeh M, Najafi B (2009) Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients. J Chem Phys 130(1):014703

    Article  CAS  Google Scholar 

  5. Galamba N, Nieto de Castro C, Ely JF (2004) Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations. J Chem Phys 120(18):8676–8682

    Article  CAS  Google Scholar 

  6. Galamba N, Nieto de Castro C, Ely JF (2005) Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations. J Chem Phys 122(22):224501

    Article  CAS  Google Scholar 

  7. Galamba N, Nieto de Castro CA, Ely JF (2004) Molecular dynamics simulation of the shear viscosity of molten alkali halides. J Phys Chem B 108(11):3658–3662

    Article  CAS  Google Scholar 

  8. Arya G, Maginn EJ, Chang H-C (2000) Efficient viscosity estimation from molecular dynamics simulation via momentum impulse relaxation. J Chem Phys 113(6):2079–2087

    Article  CAS  Google Scholar 

  9. Tissen JTWM, Janssen GJM (1990) Molecular-dynamics simulation of molten alkali carbonates. Mol Phys 71(2):413–426. https://doi.org/10.1080/00268979000101871

    Article  CAS  Google Scholar 

  10. Koishi T, Si K, Tamaki S, Ebisuzaki T (2000) Computer simulation of molten Li 2 CO 3-K 2 CO 3 mixtures. J Phys Soc Jpn 69(10):3291–3296

    Article  CAS  Google Scholar 

  11. Sivaraman G, Guo J, Ward L, Hoyt N, Williamson M, Foster I, Benmore C, Jackson N (2021) Automated development of molten salt machine learning potentials: application to LiCl. J Phys Chem Lett 12(17):4278–4285. https://doi.org/10.1021/acs.jpclett.1c00901

    Article  CAS  PubMed  Google Scholar 

  12. Li Q-J, Küçükbenli E, Lam S, Khaykovich B, Kaxiras E, Li J (2021) Development of robust neural-network interatomic potential for molten salt. Cell Rep Phys Sci 2(3):100359. https://doi.org/10.1016/j.xcrp.2021.100359

    Article  CAS  Google Scholar 

  13. Pan G, Ding J, Du Y, Lee D-J, Lu Y (2021) A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP. Comput Mater Sci 187:110055. https://doi.org/10.1016/j.commatsci.2020.110055

    Article  CAS  Google Scholar 

  14. Tovey S, Narayanan Krishnamoorthy A, Sivaraman G, Guo J, Benmore C, Heuer A, Holm C (2020) DFT Accurate interatomic potential for molten NaCl from machine learning. J Phys Chem C 124(47):25760–25768. https://doi.org/10.1021/acs.jpcc.0c08870

    Article  CAS  Google Scholar 

  15. Han J, Zhang L, Car R (2017) Deep potential: a general representation of a many-body potential energy surface. arXiv preprint arXiv:170701478

  16. Zhang L, Han J, Wang H, Car R, Weinan E (2018) Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett 120(14):143001. https://doi.org/10.1103/PhysRevLett.120.143001

    Article  CAS  PubMed  Google Scholar 

  17. Liang W, Lu G, Yu J (2020) Molecular dynamics simulations of molten magnesium chloride using machine-learning-based deep potential. Adv Theory Simul 3(12):2000180. https://doi.org/10.1002/adts.202000180

    Article  CAS  Google Scholar 

  18. Liang W, Lu G, Yu J (2021) Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials. J Mater Sci Technol 75:78–85. https://doi.org/10.1016/j.jmst.2020.09.040

    Article  Google Scholar 

  19. Zhao J, Liang W, Lu G (2021) Theoretical prediction on the redox potentials of rare-earth ions by deep potentials. Ionics 27(5):2079–2088. https://doi.org/10.1007/s11581-021-03988-0

    Article  CAS  Google Scholar 

  20. Liang W, Lu G, Yu J (2021) Machine-learning-driven simulations on microstructure and thermophysical properties of MgCl2-KCl eutectic. ACS Appl Mater Interfaces 13(3):4034–4042. https://doi.org/10.1021/acsami.0c20665

    Article  CAS  PubMed  Google Scholar 

  21. Bu M, Liang W, Lu G, Yu J (2021) Local structure elucidation and properties prediction on KCl–CaCl2 molten salt: a deep potential molecular dynamics study. Sol Energy Mater Sol Cells 232:111346. https://doi.org/10.1016/j.solmat.2021.111346

    Article  CAS  Google Scholar 

  22. Pan G, Chen P, Yan H, Lu Y (2020) A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 1. Potential development and properties prediction of molten ZnCl2. Comput Mater Sci 185:109955. https://doi.org/10.1016/j.commatsci.2020.109955

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  25. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  26. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25(12):1463–1473

    Article  CAS  Google Scholar 

  27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  28. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  29. Zhang L, Han J, Wang H, Saidi WA, Car R (2018) End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. arXiv preprint arXiv:180509003

  30. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  31. Melchionna S, Ciccotti G, Lee Holian B (1993) Hoover NPT dynamics for systems varying in shape and size. Mol Phys 78(3):533–544

    Article  CAS  Google Scholar 

  32. Marina OA (2014) Molten carbonate fuel cell interactions with impurities in synthetic flue gas. Pacific Northwest National Lab.(PNNL), Richland

    Book  Google Scholar 

  33. Kojima T, Miyazaki Y, Nomura K, Tanimoto K (2013) Physical properties of molten Li2CO3-Na2CO3 (52: 48 mol%) and Li2CO3-K2CO3 (62: 38 mol%) containing additives. J Electrochem Soc 160(10):H733

    Article  CAS  Google Scholar 

  34. Janz GJ, Tomkins RPT (1981) Physical properties data compilations relevant to energy storage. IV. Molten salts: data on additional single and multi-component salt systems. National Standard Reference Data System

  35. Spedding PL, Mills R (1966) Tracer diffusion measurements in mixtures of molten alkali carbonates. J Electrochem Soc 113(6):599

    Article  CAS  Google Scholar 

  36. Zhadan A, Sarou-Kanian V, Del Campo L, Cosson L, Malki M, Bessada C (2021) Transport properties in molten carbonates: self-diffusion and conductivity measurements at high temperature. Int J Hydrogen Energy 46(28):15059–15065. https://doi.org/10.1016/j.ijhydene.2020.06.294

    Article  CAS  Google Scholar 

  37. Yeh I-C, Hummer G (2004) System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J Phys Chem B 108(40):15873–15879

    Article  CAS  Google Scholar 

  38. Fushiki M (2003) System size dependence of the diffusion coefficient in a simple liquid. Phys Rev E 68(2):021203

    Article  CAS  Google Scholar 

  39. Wicaksono H, Zhang X, i Fujiwara S, Fujii M (2001) Measurements of thermal conductivity and thermal diffusivity of molten carbonates. The Reports of Institute of Advanced Material Study 15(2)

  40. Zhang X, Fujii M (2000) Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method. Int J Thermophys 21(1):71–84

    Article  Google Scholar 

  41. Janz GJ (1988) Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. Journal of Physical and Chemical Reference Data 17(2)

Download references

Acknowledgements

The authors thank Jia Zhao and Bo Yang, who provided support on software installation, including the DeePMD-kit and the LAMMPS. The authors also thank Jinzhe Zeng for the inspired discussions on DPMD simulation.

Funding

The authors received financial support from the National Natural Science Foundation of China (Grant U20A20147) and the National Key R&D Program of China (2018YFC0604806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guimin Lu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Yang, B. & Lu, G. Deep learning-driven molecular dynamics simulations of molten carbonates: 1. Local structure and transport properties of molten Li2CO3-Na2CO3 system. Ionics 28, 1231–1248 (2022). https://doi.org/10.1007/s11581-021-04429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04429-8

Keywords

Navigation