Skip to main content
Log in

Facile preparation and employment of NiCo2O4 host to stabilize the discharge products of soluble polysulfide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The migration of the discharge products of polysulfide in the lithium-sulfur batteries inhibits their practical application. In addition, the poor electron transport also limits the specific capacity of the element sulfur. Therefore, these two problems must be solved to achieve the high electrochemical performance of the lithium-sulfur batteries. Herein, we prepared NiCo2O4 materials via a facile method and designed it as the sulfur host materials in the lithium-sulfur batteries. The as-prepared NiCo2O4/S (NCO/S) composites showed excellent ability to stabilize the discharge products of the soluble polysulfide. Also, the NCO/S composites exhibit high electronic conductivity compared to the pure S cathode. As a result, the as-prepared NCO/S composites display high specific capacity and superior cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu N, Qian T, Liu XJ, Liu J, Chen Y, Yan CL (2017) Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett 17:538–543

    Article  CAS  Google Scholar 

  2. Fan Q, Liu W, Weng Z, Sun YM, Wang HL (2015) Ternary hybrid material for high-performance lithium–sulfur battery. J Am Chem Soc 137:12946–12953

    Article  CAS  Google Scholar 

  3. Li L, Wu ZP, Sun H, Chen DM, Gao J, Suresh S, Chow P, Singh CV, Koratkar N (2015) A Foldable Lithium-Sulfur Battery. ACS Nano 9:11342–11350

    Article  CAS  Google Scholar 

  4. Shi LW, Cheng MM, Zhang WQ, Hou SF, Hu C (2021) Fe-doped Ni(OH)2 nanosheets grown on carbon fiber cloths as cathode interlayers for high-performance lithium-sulfur batteries. Mater. Lett. 301:130332

    Article  CAS  Google Scholar 

  5. Wu F, Ye YS, Chen RJ, Qian J, Zhao T, Li L, Li WH (2015) Systematic effect for an ultralong cycle lithium–sulfur battery. Nano Lett 15:7431–7439

    Article  CAS  Google Scholar 

  6. Lo YH, Kuo PL, Wu JJ (2021) Direct coating of multifunctional zinc oxide-reduced graphene oxide interlayer on cathode for lithium-sulfur batteries. Electrochim Acta 382:138270

    Article  CAS  Google Scholar 

  7. Du Y, Huang RK, Lin XD, Khan S, Zheng BN, Fu RW (2020) Template-free preparation of hierarchical porous carbon nanosheets for lithium–sulfur battery. Langmuir 36:14507–14513

    Article  CAS  Google Scholar 

  8. Zheng SN, Sun DL, Wu LL, Liu SM, Liu GH (2021) Carbon fiber supported two-dimensional ZIF-7 interlayer for durable lithium-sulfur battery. J Alloys Compd 870:159412

    Article  CAS  Google Scholar 

  9. Li Z, Han Y, Wei JH, Wang WQ, Cao TT, Xu SM, Xu ZH (2017) Suppressing shuttle effect using janus cation exchange membrane for high-performance lithium–sulfur battery separator. ACS Appl Mater Interfaces 9:44776–44781

    Article  CAS  Google Scholar 

  10. Ahn H, Kim Y, Bae J, Kim YK, Kim WB (2020) A multifunctional SnO2-nanowires/carbon composite interlayer for high-performance lithium-sulfur batteries. Chem Eng J 401:126042

    Article  CAS  Google Scholar 

  11. Liu S, Li GR, Gao XP (2016) Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium–sulfur battery. ACS Appl Mater Interfaces 8:7783–7789

    Article  CAS  Google Scholar 

  12. Zheng BB, Yu LH, Li NR, Xi JY (2020) Efficiently immobilizing and converting polysulfide by a phosphorus doped carbon microtube textile interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 345:136186

    Article  CAS  Google Scholar 

  13. Guo JC, Yang ZC, Yu YC, Abruna HD, Archer LA (2013) Lithium–sulfur battery cathode enabled by lithium–nitrile interaction. J Am Chem Soc 135:763–767

    Article  CAS  Google Scholar 

  14. Sun ZH, Guo YP, Li BE, Tan TZ, Zhao Y (2019) ZnO/carbon nanotube/reduced graphene oxide composite film as an effective interlayer for lithium/sulfur batteries. Solid State Sci 95:105924

    Article  CAS  Google Scholar 

  15. Chen CF, Mistry A, Mukherjee PP (2017) Probing impedance and microstructure evolution in lithium–sulfur battery electrodes. J Phys Chem C 121:21206–21216

    Article  CAS  Google Scholar 

  16. Jin Q, Li L, Wang HR, Gao H, Zhu CC, Zhang XT (2019) Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable Lithium-Sulfur batteries. Electrochim Acta 312:149–156

    Article  CAS  Google Scholar 

  17. Yan JH, Liu XB, Yao M, Wang XF, Wafle TK, Li BY (2015) Long-life, high-efficiency lithium–sulfur battery from a nanoassembled cathode. Chem Mater 27:5080–5087

    Article  CAS  Google Scholar 

  18. Fan LL, Li M, Li XF, Xiao W, Chen ZW, Lu J (2019) Interlayer material selection for lithium-sulfur batteries. Joule 3:361–386

    Article  CAS  Google Scholar 

  19. Wang C, Wang XS, Yang Y, Kushima A, Chen JT, Huang YH, Li J (2015) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15:1796–1802

    Article  CAS  Google Scholar 

  20. Wang F, He X (2019) A multi-functional sulfurized polyacrylonitrile interlayer for lithium sulfur batteries. Mater Lett 256:126604

    Article  CAS  Google Scholar 

  21. Rao DW, Yang SK, Yan XH (2020) Surface atomic configurations of MnO2 regulating the immobilization of sulfides in lithium sulfur battery. J Phys Chem C 124:5565–5573

    Article  CAS  Google Scholar 

  22. Seo SD, Choi CH, Park DJ, Lee DY, Park SB, Kim DW (2020) Metal-organic-framework-derived 3D crumpled carbon nanosheets with self-assembled CoxSy nanocatalysts as an interlayer for lithium-sulfur batteries. Chem Eng J 400:125959

    Article  CAS  Google Scholar 

  23. Yu BC, Park K, Jang JH, Goodenough JB (2016) Cellulose-based porous membrane for suppressing Li dendrite formation in lithium–sulfur battery. ACS Energy Lett 1:633–637

    Article  CAS  Google Scholar 

  24. Qian M, Tang YK, Liu L, Gao Y, Li XH (2022) Well-dispersed Li2CoTi3O8 nanoparticles as a multifunctional material for lithium-ion batteries and lithium-sulfur batteries. J Alloys Compd 896:162926

    Article  CAS  Google Scholar 

  25. Zhang X, Wan TT, Jia AZ, Li JD, Liu GH, Sun DL, Wang YJ (2021) Graphene oxide-wrapped cobalt-doped oxygen-deficient titanium dioxide hollow spheres clusters as efficient sulfur immobilizers for lithium-sulfur batteries. Electrochim Acta 397:139264

    Article  CAS  Google Scholar 

  26. Jiang SX, Chen MF, Wang XY, Zhang Y, Huang C, Zhang YP, Wang Y (2019) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem Eng J 355:478–486

    Article  CAS  Google Scholar 

  27. Yao SS, Tang H, Liu MQ, Chen LL, Jing MX, Shen XQ, Li TB, Tan JL (2019) TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries. J Alloys Compd 788:639–648

    Article  CAS  Google Scholar 

  28. Song ZC, Lu XL, Hu Q, Ren J, Zhang WQ, Zheng QJ, Lin DM (2019) Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium–sulfur batteries. J Power Sources 421:23–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Ban.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, L. Facile preparation and employment of NiCo2O4 host to stabilize the discharge products of soluble polysulfide. Ionics 28, 1845–1850 (2022). https://doi.org/10.1007/s11581-021-04428-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04428-9

Keywords

Navigation