Skip to main content

Advertisement

Log in

Co/C nanomaterial derived from Co metal–organic framework for oxygen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The precursor of Co metal organic framework (MOF) was first synthesized by hydrothermal method; then, the optimal Co-MOF was pyrolyzed in a nitrogen atmosphere to obtain the derivative (Co/C). The as-prepared materials were finally applied to water splitting to investigate their oxygen evolution reaction (OER) performance. A series of electrochemical tests such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) show that Co/C (700 °C) exhibits lowest overpotential (420 mV) and charge transfer resistance (Rct = 5.25 Ω), smallest Tafel slope (119 mV dec−1) as compared to other relevant materials. After the cyclic life test of 10,000 s, the current density of Co/C (700 °C) remained at 94.88%. In addition, the comparison of the OER performance between Co/C (700 °C) with other reported cobalt-based materials illustrates that Co/C (700 °C) has lower overpotential, and its Tafel slope is also comparable with these reported cobalt-based materials. Therefore, Co/C (700 °C) has broad application prospect in oxygen-evolution reaction.

Graphical abstract

Scheme 1 Fabrication Co/C derived from Co-MOF and brief schematic of OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding D, Shen K, Chen X-D, Chen H-R, Chen J-Y, Fan T, Wu R-F, Li Y-W (2018) Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal 8:7879–7888

    CAS  Google Scholar 

  2. Yan L, Dai P, Wang Y, Gu X, Li L, Cao L, Zhao X (2017) In situ synthesis strategy for hierarchically porous Ni2P polyhedrons from MOFs templates with enhanced electrochemical (properties for hydrogen evolution. ACS Appl Mater Interfaces 9:11642–11650

    CAS  PubMed  Google Scholar 

  3. Gao J, Huang Q, Wu Y, Lan Y-Q, Chen B (2021) Metal–organic frameworks for photo/electrocatalysis. Adv Energy Sustain Res 2:2100033

    Google Scholar 

  4. Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y (2016) Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem 55:12854–12858

    CAS  Google Scholar 

  5. Xia C, Jiang Q, Zhao C, Hedhili MN, Alshareef HN (2016) Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv Mater 28:77–85

    CAS  PubMed  Google Scholar 

  6. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Zhao T, Lu M, Wu Y, Xie Y, Xu H, Zhang Q (2019) Enhancing oxygen evolution reaction through modulating electronic structure of trimetallic electrocatalysts derived from metal–organic frameworks. Small 15:1901940

    CAS  Google Scholar 

  8. Liu Q, Xie L, Shi X, Du G, Asiri AM, Luo Y, Sun X (2018) High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorg Chem Front 5:1570–1574

    CAS  Google Scholar 

  9. Wang C, Liu X, Keser DN, Du G, Asiri AM, Luo Y, Sun X (2016) Applications of water stable metal-organic frameworks. Chem Soc Rev 45:5107–5108

    CAS  PubMed  Google Scholar 

  10. Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451–9469

    CAS  PubMed  Google Scholar 

  11. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 28:267–284

    CAS  Google Scholar 

  12. Meilikhov M, Yusenko K, Esken D, Turner S, Tendeloo GV, Fischer RA (2010) Metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions. Eur J Inorg Chem 24:3701–3714

    Google Scholar 

  13. Wang Y, Zhang Z, Liu X, Ding F, Zou P, Wang X, Zhao Q, Rao H (2018) MOF-derived NiO/NiCo2O4 and NiO/NiCo2O4-rGO as highly efficient and stable electrocatalysts for oxygen evolution reaction. ACS Sustain Chem Eng 6:12511–12521

    CAS  Google Scholar 

  14. Sun D, Ye L, Sun F, García H, Li Z (2017) From mixed-metal MOFs to carbon-coated core–shell metal alloy@metal oxide solid solutions: transformation of Co/Ni-MOF-74 to CoxNi1–x@ CoyNi1–yO@C for the oxygen evolution reaction. Inorg Chem 56:5203–5209

    CAS  PubMed  Google Scholar 

  15. Duan J-J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:1–7

    Google Scholar 

  16. Flugel EA, Lau VW, Schlomberg H, Glaum R, Lotsch BV (2016) Homonuclear mixed-valent cobalt imidazolate framework for oxygen-evolution electrocatalysis. Chem A Eur J 22:3676

    Google Scholar 

  17. Wang C-H, Liu X-L, Demir NK, Chen J-P, Li K (2016) Applications of water stable metaleorganic frameworks. Chem Soc Rev 45:5107

    CAS  PubMed  Google Scholar 

  18. Wu H-B, (David) Lou X-W (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3:9252

    Google Scholar 

  19. Xie A-J, Zhang J, Tao X (2019) Nickel-based MOF derived Ni@NiO/NeC nanowires with core-shell structure for oxygen evolution reaction. Electrochim Acta 324:134814

    CAS  Google Scholar 

  20. Wu Y, Li Y, Gao J, Zhang Q (2021) Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat 1:66–87

    Google Scholar 

  21. Zhong L, Bao Y, Feng L (2019) Fe-doping effect on CoTe catalyst with greatly boosted intrinsic activity for electrochemical oxygen evolution reaction. Electrochim Acta 321:134656

    CAS  Google Scholar 

  22. Zhang C, Tang B, Gu X, Feng L (2019) Surface chemical state evaluation of CoSe2 catalysts for the oxygen evolution reaction. Chem Commun 55:10928–10931

    CAS  Google Scholar 

  23. Li M, Ying G, Chang Y, Xiaocong G, Tian J, Xiang W, Feng L (2021) Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chem Eng J 425:130686. https://doi.org/10.1016/j.cej.2021.130686

    Article  CAS  Google Scholar 

  24. Feng L, Ding R, Chen Y, Wang J, Xu L (2020) Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into n-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. J Power Sources 452:227837

    CAS  Google Scholar 

  25. Schejn A, Balan L, Falk V, Aranda L, Medjahdi G, Schneider R (2014) Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 16:4493–4500

    CAS  Google Scholar 

  26. Forgie R, Bugosh G, Neyerlin KC, Liu Z, Strasser P (2010) Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem Solid State Lett 13:B36–B39

    CAS  Google Scholar 

  27. Cao F, Gan M, Ma L, Li X, Yan F, Ye M, Zhai Y, Zhou Y (2017) Hierarchical sheet-like Ni–Co layered double hydroxide derived from a MOF template for high-performance supercapacitors. Synth Met 234:154–160

    CAS  Google Scholar 

  28. Danilovic N, Subbaraman R, Chang KC, Chang S-H, Kang Y-J, Snyder J, Paulikas AP, Strmcnik D, Kim KT, Myers D, Stamenkovic VR, Markovic NM (2014) Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed 53:14016–14021

    CAS  Google Scholar 

  29. Song G, Wang Z, Wang L, Li G, Huang M, Yin F (2006) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chin J Catal 35:185–195

    Google Scholar 

  30. Kurfiřtová L, Seo YK, Hwang YK, Chang J-S, Cejka J (2012) High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride. Catal Today 179:85–90

    Google Scholar 

  31. Yan W-N, Yang Z-R, Bian W-Y, Yang Y-Y (2015) FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92:74–83

    CAS  Google Scholar 

  32. Mousavi DS, Asen P, Shahrokhian S, Irajizad A (2019) Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 563:241–251

    PubMed  Google Scholar 

  33. Karthikeyan N, Prince JJ, Ramalingam S, Periandy S (2014) Electronic [UV–visible] and vibrational [FT-IR, FT-Raman] investigation and NMR–mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations. Spectrochim Acta A Mol Biomol Spectrosc 139:229–242

    PubMed  Google Scholar 

  34. Abedini H, Shariati A, Khosravi-Nikou MR (2020) Adsorption of propane and propylene on M-MOF-74 (M=Cu, Co): Equilibrium and kinetic study. Chem Eng Res Des 153:96–106

    CAS  Google Scholar 

  35. Wang J, Ni Y (2020) Ammonium molybdate-assisted shape-controlled synthesis of fluorescent Co(II)-based MOFs nanoflakes as highly-sensitive probes for selective detection of vanillin in milk powders. Mater Res Bull 123:110721

    CAS  Google Scholar 

  36. Zha Q-Q, Yuan F-F, Qin G-X, Ni Y (2020) Cobalt-based MOF-on-MOF two-dimensional heterojunction nanostructures for enhanced oxygen evolution reaction electrocatalytic activity. Inorg Chem 59:1295–1305

    CAS  PubMed  Google Scholar 

  37. Yang J, Zhang F, Wang X, He D, Wu G, Yang Q (2016) Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew Chem 55:12854–12858

    CAS  Google Scholar 

  38. He P, Yu X-Y, Lou X-W (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56:3897–3900

    CAS  Google Scholar 

  39. Yu X, Feng Y, Guan B, Lou X-W, Pailk U (2016) Carbon coated nickel phosphides porous nanoplates for highly efficient oxygen evolution reaction. Energy Environ Sci 9:1246–1250

    CAS  Google Scholar 

  40. Wang M, Wang P, Li C, Li H, Jin Y (2018) Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Appl Mater Interfaces 10:37095–37102

    CAS  PubMed  Google Scholar 

  41. Khan SB, Khan SA, Asiri AM (2016) A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl Surf Sci 370:445–451

    CAS  Google Scholar 

  42. Yu C, Liu Z, Han X, Huang H, Zhao C, Yang J, Qiu J (2016) NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 110:1–7

    CAS  Google Scholar 

  43. Liu G, Liu J, Liu B, Yang C, Qian D, Li J (2018) Ketjen black carbon supported CoO@Co−N−C nanochains as an efficient electrocatalyst for oxygen evolution. Int J Hydrogen Energy 43:22942–22948

    CAS  Google Scholar 

  44. Yuan Y, Sun L, Li Y, Zhan W, Wang X, Han X (2020) Synergistic modulation of active sites and charge transport: N/S Co-doped C encapsulated NiCo2O4/NiO hollow microrods for boosting oxygen evolution catalysis. Inorg Chem 59:4080–4089

    CAS  PubMed  Google Scholar 

  45. Zou Z, Wang T, Zhao X, Jiang W, Pan H, Gao D, Xu C (2019) Expediting in-situ electrochemical activation of two-dimensional metal–organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal 9:7356–7364

    CAS  Google Scholar 

  46. Zhang W, Li D, Zhang L, She X, Yang D (2019) NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J Energy Chem 39:39–53

    Google Scholar 

  47. Béjar J, Álvarez-Contreras L, Ledesma-García J, Arjona N, Arriaga LG (2019) Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. J Electroanal Chem 847:113190

    Google Scholar 

  48. Zhang C, Duan N, Jiang L, Xu F (2018) The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte. J Electroanal Chem 811:53–61

    CAS  Google Scholar 

  49. Peng L, Shah SSA, Wei Z (2018) Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin J Catal 39:1575–1593

    CAS  Google Scholar 

  50. Li D, Xu H-Q, Jiao L, Jiang H-L (2019) Metal-organic frameworks for catalysis: state-of-the-art, challenges, and opportunities. J Energy Chem 1:100005

    CAS  Google Scholar 

  51. Jayaraman T, Murthy AP, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Senthil AR, Shanker R, Raghavender M, Kuppusami P, Jagannathan M, Ashokkumar M (2018) Recent development on carbon based heterostructures for their applications in energy and environment: a review. J Ind Eng Chem 64:16–59

    CAS  Google Scholar 

  52. Asiri AM, Akhtar K, Khan SB (2019) Cobalt oxide nanocomposites and their electrocatalytic behavior for oxygen evolution reaction. Ceram Int 45:13340–13346

    CAS  Google Scholar 

  53. Kandiel TA (2019) Iron-incorporated NiS/Ni(OH)2 composite as an efficient electrocatalyst for hydrogen evolution reaction from water in a neutral medium. Appl Catal A Gen 586:117226

    CAS  Google Scholar 

  54. Forster JC, Marcu LG, Bezak E (2019) Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med Eur J Med Phys 64:145–156

    Google Scholar 

Download references

Funding

This work was supported by Changzhou Science and Technology Support Plan (Social Development, CE20205052) (Jiangsu Province, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiping Luo or Aijuan Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiabing Hu and Haoye Wang contributed equally to this work and should be regarded as first joint authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Wang, H., Qi, S. et al. Co/C nanomaterial derived from Co metal–organic framework for oxygen evolution reaction. Ionics 28, 813–821 (2022). https://doi.org/10.1007/s11581-021-04376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04376-4

Keywords

Navigation