Skip to main content

Advertisement

Log in

Electrochemical improvement in high-voltage Li-ion batteries by electrospinning a small amount of nano-Al2O3 in P(MVE-MA)/P(VdF-HFP)-blended gel electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To improve the comprehensive performance of fibrous membrane based on poly(methyl vinyl ether-alt-maleic anhydride) P(MVE-MA)- and poly(vinylidene fluoride-co-hexafluoropropylene) P(VdF-HFP)-blended copolymers, a small amount of nano-Al2O3 was doped by electrospinning technique to apply for high-energy-density cathode material of nickel-rich LiNi0.8Co0.15Al0.05O2 (NCA) based Li-ion battery. The results indicated that the electrospinning membrane and corresponding gel polymer electrolyte (GPE) only doped with 3.0 wt.% nano-Al2O3 presented the proper structure and delivered the best electrochemical characterization. Due to the uniform distribution of nanoparticles on the fibers with higher density, the specific surface area and porosity of the fiber membrane were increased, leading to the improved fracture stress of 172.0 MPa for the membrane and ionic conductivity of 2.1 × 10−3 S cm−1 for the GPE at room temperature. Contributed from the proper pore structure and the enhanced interfacial stability, the capacity retention of 89.4% was achieved for the Li/GPE/NCA coin cell after 200 cycles in the voltage range of 3.0 V and 4.3 V under room temperature using the GPE doped with 3 wt.% Al2O3, compared with that of 63.6% for the GPE without nanoparticles. Similarly, the discharge capacity of the coin cell under 7C rate (123.2 mAh g−1) maintained 65% of that at 0.3C (189.4 mAh g−1), showing good rate performance of the developed GPE. Therefore, the significant improvement in electrochemical stability of the GPE achieved by doping a small number of nanoparticles provided a simple and feasible solution for the development of high-energy-density Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vishwakarma V, Jain A (2017) Enhancement of thermal transport in gel polymer electrolytes with embedded BN/Al2O3 nano− and micro−particles. J Power Sources 362:219–227

    Article  CAS  Google Scholar 

  2. Zhao HJ, Deng NP, Ju JG, Li ZJ, Kang WM, Cheng BW (2019) Novel configuration of heat−resistant gel polymer electrolyte with electrospun poly (vinylidene fluoride−co−hexafluoropropylene) and poly−m−phenyleneisophthalamide composite separator for high−safety lithium−ion battery. Mater Lett 236:101–105

    Article  CAS  Google Scholar 

  3. Luo L, Wang D, Zhou Z, Dong P, Yang S, Duan J, Zhang Y (2021) Engineering a robust interface on Ni−rich cathodes via a novel dry doping process toward advanced high−voltage performance. ACS Appl Mater Interfaces 13:45068–45076

    Article  CAS  Google Scholar 

  4. Xu D, Jin J, Chen CH, Wen ZY (2018) From nature to energy storage: A novel sustainable 3D crosslinked chitosan−PEGGE based gel polymer electrolyte with excellent lithium ion transport properties for lithium batteries. ACS Appl Mater Interfaces 10:38526–38537

    Article  CAS  Google Scholar 

  5. Unge M, Gudla H, Zhang C, Brandell D (2020) Electronic conductivity of polymer electrolytes: electronic charge transport properties of LiTFSI−doped PEO. Phys Chem Chem Phys 22:7680–7684

    Article  CAS  Google Scholar 

  6. Jiang TL, He PG, Wang GX, Shen Y, Nan CW, Fan LZ (2020) Solvent−free synthesis of thin, flexible, nonflammable garnet−based composite solid electrolyte for all−solid−state lithium batteries. Adv Energy Mater 12:1903376

    Article  Google Scholar 

  7. Li S, Zhang SQ, Shen L, Liu Q, Ma JB, Lv W, He YB, Yang QH (2020) Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 5:1903088

    Article  Google Scholar 

  8. Huang YX, Huang Y, Liu B, Cao HJ, Zhao L, Song AM, Lin YH, Wang MS, Li X, Zhang ZP (2018) Gel polymer electrolyte based on p(acrylonitrile−maleic anhydride) for lithium ion battery. Electrochim Acta 286:242–251

    Article  CAS  Google Scholar 

  9. Wu N, Cao Q, Wang X, Li S, Li X, Deng H (2011) In situ ceramic fillers of electrospun thermoplastic polyurethane/poly (vinylidene fluoride) based gel polymer electrolytes for Li−ion batteries. J Power Sources 196:9751–9756

    Article  CAS  Google Scholar 

  10. Li W, Xing Y, Wu Y, Wang J, Chen L, Yang G, Tang B (2015) Study the effect of ion−complex on the properties of composite gel polymer electrolyte based on electrospun PVdF nanofibrous membrane. Electrochim Acta 151:289–296

    Article  CAS  Google Scholar 

  11. Liang SS, Yan WQ, Wu X, Zhang Y, Zhu YS, Wang HW, Wu YP (2018) Gel polymer electrolytes for lithium ion batteries: fabrication, characterization and performance. Solid State Ionics 318:2–18

    Article  CAS  Google Scholar 

  12. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  13. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  14. Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly (vinylidene fluoride) as a gel membrane of high safety for lithium ion battery, Energ Environ Sci 6:618–624

    CAS  Google Scholar 

  15. Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749

    Article  CAS  Google Scholar 

  16. Choi SW, Jo SM, Lee WS, Kim YR (2003) An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater 15:2027–2032

    Article  CAS  Google Scholar 

  17. Liao YH, Zhou DY, Rao MM, Li WS, Cai ZP, Liang Y, Tan CL (2009) Self−supported poly(methyl methacrylate−acrylonitrile−vinyl acetate)−based gel electrolyte for lithium ion battery. J Power Sources 189:139–144

    Article  CAS  Google Scholar 

  18. Liang YF, Xia Y, Zhang SZ, Wang XL, Xia XH, Gu CD, Wu JB, Tu JP (2019) A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride−hexafluoropropylene) −poly(propylene carbonate) for solid−state lithium ion batteries. Electrochim Acta 296:1064–1069

    Article  CAS  Google Scholar 

  19. Seidel SM, Jeschke S, Vettikuzha P, Wiemhöfer HD (2015) PVDF−HFP/ether−modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chem Commun 51:12048–12051

    Article  CAS  Google Scholar 

  20. Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R (2011) Enhanced electrochemical and mechanical properties of P(VDF−HFP)−based composite polymer electrolytes with SiO2 nanowires. J Membrane Sci 379:80–85

    Article  CAS  Google Scholar 

  21. Dong YQ, Wang M, Chen L, Li MJ (2012) Preparation, characterization of P (VDF−HFP)/[bmim] BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination 295:53–60

    Article  CAS  Google Scholar 

  22. Li M, Liao Y, Liu Q, Xu J, Chen F, Huang J, Li W (2018) Application of poly(vinylidene fluoride−co−hexafluoropropylene) blended poly(methyl vinyl ether−alt−maleic anhydride) based gel polymer electrolyte by electrospinning in Li−ion batteries. Solid State Ionics 325:57–66

    Article  CAS  Google Scholar 

  23. Shi C, Dai J, Shen X, Peng L, Li C, Wang X, Zhang P, Zhao J (2016) A high−temperature stable ceramic−coated separator prepared with polyimide binder/Al2O3 particles for lithium−ion batteries. J Membrane Sci 517:91–99

    Article  CAS  Google Scholar 

  24. Vijayakumar G, Karthick SN, SathiyaPriya AR, Ramalingam S, Subramania A (2008) Effect of nanoscale CeO2 on PVDF−HFP−based nanocomposite porous polymer electrolytes for Li−ion batteries. J. Solid State Electrochem 12:1135–1141

    Article  CAS  Google Scholar 

  25. Mishra K, Arif T, Kumar R, Kumar D, Subramania A (2019) Effect of Al2O3 nanoparticles on ionic conductivity of PVdF-HFP/PMMA blend-based Na+-ion conducting nanocomposite gel polymer electrolyte. J Solid State Electrochem 23:2401–2409

    Article  CAS  Google Scholar 

  26. Gu L, Zhang M, He J, Ni P (2018) A porous cross-linked gel polymer electrolyte separator for lithium-ion batteries prepared by using zinc oxide nanoparticle as a foaming agent and filler. Electrochim Acta 292:769–7781

    Article  CAS  Google Scholar 

  27. Li W, Li X, Yuan A, Xie X, Xia B (2016) Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 22:2143–2149

    Article  CAS  Google Scholar 

  28. Cheng J, Cao X, Zhou D, Tong Y (2020) Preparation of SiO2 grafted polyimidazole solid electrolyte for lithium-ion batteries. Ionics 26:3883–3892

    Article  CAS  Google Scholar 

  29. Xia Y, Li Y, Xiao Z, Zhou X, Wang G, Zhang J, Gan Y, Huang H, Liang C, Zhang W (2020) β-Cyclodextrin-modified porous ceramic membrane with enhanced ionic conductivity and thermal stability for lithium-ion batteries. Ionics 26:173–182

    Article  CAS  Google Scholar 

  30. Huang W, Liao Y, Li G, He Z, Luo X, Li W (2017) Investigation on polyethylene supported poly(butyl methacrylate−acrylonitrile−styrene) terpolymer based gel electrolyte reinforced by doping nano−SiO2 for high voltage lithium ion battery. Electrochim Acta 251:145–154

    Article  CAS  Google Scholar 

  31. Liao Y, Chen T, Luo X, Fu Z, Li X, Li W (2016) Cycling performance improvement of polypropylene supported poly(vinylidene fluoride−co−hexafluoropropylene)/maleic anhydride−grated−polyvinylidene fluoride based gel electrolyte by incorporating nano−Al2O3for full batteries. J Membrane Sci 507:126–134

  32. Sun P, Liao Y, Luo X, Li Z, Chen T, Xing L, Li W (2015) The improved effect of co−doping with nano−SiO2 and nano−Al2O3 on the performance of poly(methyl methacrylate−acrylonitrile−ethyl acrylate) based gel polymer electrolyte for lithium ion batteries. RSC Adv 5:64368–64377

    Article  CAS  Google Scholar 

  33. Liao YH, Li XP, Fu CH, Xu R, Zhou L, Tan CL, Hu SJ, Li WS (2011) Polypropylene–supported and nano–Al2O3 doped poly(ethylene oxide)–poly(vinylidene fluoride–hexafluoropropylene)–based gel electrolyte for lithium ion batteries. J Power Sources 196:2115–2121

    Article  CAS  Google Scholar 

  34. Liao YH, Li WS (2017) Research progresses on gel polymer separators for lithium−ion batteries. Acta Phys Chim Sin 33:1533–1547

    Article  CAS  Google Scholar 

  35. Liao YH, Rao MM, Li WS, Yang LT, Zhu BK, Xu R, Fu CH (2010) Fumed silica–doped poly(butyl methacrylate–styrene)–based gel polymer electrolyte for lithium ion battery. J Membrane Sci 352:95–99

  36. Liao YH, Li XP, Fu CH, Xu R, Rao MM, Zhou L, Hu SJ, Li WS (2011) Performance improvement of polyethylene−supported poly(methyl methacrylate−vinyl acetate)−co−poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano−Al2O3. J Power Sources 196:6723–6728

    Article  CAS  Google Scholar 

  37. Li M, Liao Y, Liu Q, Xu J, Sun P, Shi H, Li W (2018) Application of the imidazolium ionic liquid based nano−particle decorated gel polymer electrolyte for high safety lithium ion battery. Electrochim Acta 284:188–201

    Article  CAS  Google Scholar 

  38. Choktaweesap N, Arayanarakul K, Aht-Ong D, Meechaisue C, Supaphol P (2007) Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J 39:622–631

    Article  CAS  Google Scholar 

  39. Liao Y, Rao M, Li W, Tan C, Yi J, Chen L (2009) Improvement in ionic conductivity of self–supported P(MMA–AN–VAc) gel electrolyte by fumed silica for lithium ion batteries. Electrochim Acta 54:6396–6402

    Article  CAS  Google Scholar 

  40. Bruce PG, Vincent CA (1987) Steady state current flow in solid binary electrolyte cells. J Electroanal Chem 225:1–17

    Article  CAS  Google Scholar 

  41. Christie L, Christie AM, Vincent CA (1999) Measurement of the apparent lithium ion transference number and salt diffusion coefficient in solid polymer electrolytes. Electrochim Acta 44:2909–2913

    Article  CAS  Google Scholar 

  42. Li Z, Su G, Gao D, Wang X, Li X (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VdF−HFP)−based polymer electrolyte. Electrochim Acta 49:4633–4639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful for the financial support from Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010141) and Guangzhou Science and Technology Plan Project (Grant No. 202102080610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhao Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, G., He, M., Liao, Y. et al. Electrochemical improvement in high-voltage Li-ion batteries by electrospinning a small amount of nano-Al2O3 in P(MVE-MA)/P(VdF-HFP)-blended gel electrolyte. Ionics 28, 767–777 (2022). https://doi.org/10.1007/s11581-021-04351-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04351-z

Keywords

Navigation