Skip to main content
Log in

Fe-Ce0.1Zr0.9O2-Ag electrode for one-step methane synthesis in solid oxide electrolyser

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel mixed oxide material, Fe-Ce0.1Zr0.9O2-Ag, has been tested as cathode, for the very first time, for one-step methane synthesis in a single temperature solid oxide electrolyser by electrolysing a H2/CO2 (4:1 v/v) mixture at 500 °C. Maximum methane selectivity and yield were 6.67 % and 2.66 %, respectively, at an applied potential of 1.6 V (corresponding to a current density of 3.94 mAcm-2). CO2 conversion (~ 40 %) was independent of the applied voltage. However, upon increasing the potential, CO% dropped monotonically with a commensurate increase in methane%. Calculations based on oxide ion removal as a function of current density confirmed that under loaded conditions steam generated in situ (via reverse water gas shift and methanation reactions) got electrolysed to H2, which reacted with CO producing more methane. Such excess methane produced purely electrolytically under loaded conditions matched well with the values predicted theoretically assuming that the decrease in CO% was solely due to enhanced methanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rego de Vasconcelos B, Lavoie J-M (2019) Recent advances in power-to-X technology for the production of fuels and chemicals. Front Chem 7:392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghaib K, Ben-Fares F-Z (2018) Power-to-methane: a state-of-the-art review. Renewable Sustain Energy Rev 81:433–446

    Article  CAS  Google Scholar 

  3. Wang Y, Diaz DFR, Chen KS, Wang Z, Adroher XC (2020) Materials, technological status, and fundamentals of PEM fuel cells–a review. Mater Today 32:178–203

    Article  CAS  Google Scholar 

  4. Hauch A, Küngas R, Blennow P, Hansen AB, Hansen JB, Mathiesen BV, Mogensen MB (2020) Recent advances in solid oxide cell technology for electrolysis, Science, 370

  5. Wang J, Bentley Y (2020) Modelling world natural gas production. Energy Reports 6:1363–1372

    Article  Google Scholar 

  6. Lei L, Liu T, Fang S, Lemmon JP, Chen F (2017) The co-electrolysis of CO 2–H 2 O to methane via a novel micro-tubular electrochemical reactor. J Mater Chem A 5:2904–2910

    Article  CAS  Google Scholar 

  7. Deutz S, Bardow A (2021) Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nature Energy 6:203–213

    Article  CAS  Google Scholar 

  8. Xie K, Zhang Y, Meng G, Irvine JTJE, Science E (2011) Direct synthesis of methane from CO 2/H2O in an oxygen-ion conducting solid oxide electrolyser. 4 2218-2222

  9. Chen L, Chen F, Xia CJE, Science E (2014) Direct synthesis of methane from CO 2–H 2 O co-electrolysis in tubular solid oxide electrolysis cells. 7 4018-4022

  10. L. Lei, T. Liu, S. Fang, J.P. Lemmon, Chen FJJoMCA (2017) The co-electrolysis of CO 2–H 2 O to methane via a novel micro-tubular electrochemical reactor. 5 2904-2910

  11. Chen B, Xu H, Ni M (2017) Modelling of SOEC-FT reactor: pressure effects on methanation process. Appl Energy 185:814–824

    Article  CAS  Google Scholar 

  12. Jensen SH, Høgh JV, Barfod R, Mogensen MB (2003) High temperature electrolysis of steam and carbon dioxide. Risø Int Energy Conference 2003:204–215

    Google Scholar 

  13. Li W, Wang H, Shi Y, Cai N (2013) Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells. Int J Hydrogen Energy 38:11104–11109

    Article  CAS  Google Scholar 

  14. Bierschenk DM, Wilson JR, Barnett SA (2011) High efficiency electrical energy storage using a methane–oxygen solid oxide cell. Energy Environ Sci 4:944–951

    Article  CAS  Google Scholar 

  15. Luo Y, Shi Y, Chen Y, Li W, Jiang L, Cai N (2020) Pressurized tubular solid oxide H2O/CO2 coelectrolysis cell for direct power-to-methane. AIChE J 66:e16896

    Article  CAS  Google Scholar 

  16. Luo Y, Li W, Shi Y, Cao T, Ye X, Wang S, Cai N (2015) Experimental characterization and theoretical modeling of methane production by H2O/CO2 co-electrolysis in a tubular solid oxide electrolysis cell. J Electrochem Soc 162:F1129

    Article  CAS  Google Scholar 

  17. Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta 43:375–394

    Article  CAS  Google Scholar 

  18. Green RD, Liu C-C, Adler SB (2008) Carbon dioxide reduction on gadolinia-doped ceria cathodes. Solid State Ionics 179:647–660

    Article  CAS  Google Scholar 

  19. de Groot S and P. Mazur (1962) Non-equilibrium thermodynamics, North Holland Publishing Company, Amsterdam

  20. Graves C, Ebbesen SD, Jensen SH, Simonsen SB, Mogensen MB (2015) Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature Mater 14:239–244

    Article  CAS  Google Scholar 

  21. Pandiyan A, Uthayakumar A, Subrayan R, Cha SW, Krishna Moorthy SB (2019) Review of solid oxide electrolysis cells: a clean energy strategy for hydrogen generation. Nanomater Energy 8:2–22

    Article  Google Scholar 

  22. Mogensen MB, Hauch A, Sun X, Chen M, Tao Y, Ebbesen SD, Hansen KV, Hendriksen PV (2017) Relation between Ni particle shape change and Ni migration in Ni–YSZ electrodes–a hypothesis. Fuel Cells 17:434–441

    Article  CAS  Google Scholar 

  23. Kaur G, Kulkarni AP, Giddey S (2018) CO2 reduction in a solid oxide electrolysis cell with a ceramic composite cathode: effect of load and thermal cycling. Int J Hydrogen Energy 43:21769–21776

    Article  CAS  Google Scholar 

  24. Park S, Kim Y, Han H, Chung YS, Yoon W, Choi J, Kim WB (2019) In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO. Appl Catalysis B: Environ 248:147–156

    Article  CAS  Google Scholar 

  25. Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J (2017) A review of high temperature co-electrolysis of H 2 O and CO 2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem Soc Rev 46:1427–1463

    Article  CAS  PubMed  Google Scholar 

  26. Xie Y, Xiao J, Liu D, Liu J, Yang C (2015) Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode. J Electrochem Soc 162:F397

    Article  CAS  Google Scholar 

  27. Habazaki H, Yamasaki M, Kawashima A, Hashimoto KJAoc (2000) Methanation of carbon dioxide on Ni/(Zr–Sm) O x catalysts. 14 803-808

  28. Perkas N, Amirian G, Zhong Z, Teo J, Gofer Y, Gedanken AJCl, (2009) Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO 2 doped with rare earth oxides. 130 455-462

  29. Trovarelli AJCR (1996) Catalytic properties of ceria and CeO2-containing materials, 38 439-520

  30. Chen A, Miyao T, Higashiyama K, Watanabe M (2014) High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation. Catalysis Sci Technol 4:2508–2511

    Article  CAS  Google Scholar 

  31. Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez ME, Da Costa P (2016) Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int J Hydrogen Energy 41:11584–11592

    Article  CAS  Google Scholar 

  32. Boaro M, De Leitenburg C, Dolcetti G, Trovarelli A (2000) The dynamics of oxygen storage in ceria–zirconia model catalysts measured by CO oxidation under stationary and cycling feedstream compositions. J Catalysis 193:338–347

    Article  CAS  Google Scholar 

  33. Landau M, Meiri N, Utsis N, Vidruk Nehemya R, Herskowitz M (2017) Conversion of CO2, CO, and H2 in CO2 hydrogenation to fungible liquid fuels on Fe-based catalysts. Industrial Eng Chem Res 56:13334–13355

    Article  CAS  Google Scholar 

  34. Li S, Ding W, Meitzner GD, Iglesia E (2002) Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer− Tropsch synthesis. J Phys Chem B 106:85–91

    Article  CAS  Google Scholar 

  35. Subotić V, Hochenauer C (2020) High temperature electrochemical production of hydrogen, current trends and future developments on (Bio-) membranes, Elsevier, pp. 203-227

  36. Mougin J (2015) Hydrogen production by high-temperature steam electrolysis, Compendium of Hydrogen Energy, Elsevier , pp. 225-253

  37. Prasad DH, Jung H-Y, Jung H-G, Kim B-K, Lee H-W, Lee J-H (2008) Single step synthesis of nano-sized NiO–Ce0. 75Zr0. 25O2 composite powders by glycine nitrate process. Mater Lett 62:587–590

    Article  Google Scholar 

  38. Lee S-I, Choi M-B, Dasari HP, Hong J, Kim H, Son J-W, Lee J-H, Kim B-K, Je H-J, Yoon KJ (2014) Role of ceria-zirconia solid solution with high oxygen storage capacity in cermet anodes of solid oxide fuel cells. J Electrochem Soc 161:F883

    Article  CAS  Google Scholar 

  39. Song S, Fuentes RO, Baker RT (2010) Nanoparticulate ceria–zirconia anode materials for intermediate temperature solid oxide fuel cells using hydrocarbon fuels. J Mater Chem 20:9760–9769

    Article  CAS  Google Scholar 

  40. Ahn K, He H, Vohs JM, Gorte RJ (2005) Enhanced thermal stability of SOFC anodes made with CeO2-ZrO2 solutions. Electrochem Solid State Lett 8:A414

    Article  CAS  Google Scholar 

  41. Kawada T, Yokokawa H, Dokiya M, Sakai N, Horita T, Van Herle J, Sasaki K (1997) Ceria-zirconia composite electrolyte for solid oxide fuel cells. J Electroceramics 1:155–164

    Article  Google Scholar 

  42. Devaiah D, Reddy LH, Park S-E, Reddy BM (2018) Ceria–zirconia mixed oxides: synthetic methods and applications. Catalysis Rev 60:177–277

    Article  CAS  Google Scholar 

  43. Ocampo F, Louis B, Kiennemann A, Roger A (2011) CO2 methanation over Ni-Ceria-Zirconia catalysts: effect of preparation and operating conditions, IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012007

  44. Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1− xO2 catalysts for carbon dioxide methanation. Appl Catalysis A: Gen 392:36–44

    Article  CAS  Google Scholar 

  45. Ocampo F, Louis B, Roger A-C (2009) Methanation of carbon dioxide over nickel-based Ce0. 72Zr0. 28O2 mixed oxide catalysts prepared by sol–gel method. Appl Catalysis A: Gen 369:90–96

    Article  CAS  Google Scholar 

  46. Yeste M, Primus P, Alcantara R, Cauqui M, Calvino J, Pintado J, Blanco G (2020) Surface characterization of two Ce0. 62Zr0. 38O2 mixed oxides with different reducibility. Appl Surface Sci 503:144255

    Article  CAS  Google Scholar 

  47. Last B, Thouless D (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719

    Article  CAS  Google Scholar 

  48. Biswas S, Kulkarni AP, Fini D, Giddey S, Bhattacharya S (2021) In situ synthesis of methane using Ag–GDC composite electrodes in a tubular solid oxide electrolytic cell: new insight into the role of oxide ion removal. Sustainable Energy Fuels 5:2055–2064

    Article  CAS  Google Scholar 

  49. Biswas S, Kulkarni AP, Fini D, Rathore SS, Seeber A, Giddey S, Bhattacharya S (2021) Catalyst-induced enhancement of direct methane synthesis in solid oxide electrolyser, Electrochimica Acta, 138934

  50. Fini D, Badwal SP, Giddey S, Kulkarni AP, Bhattacharya S (2018) Evaluation of Sc2O3–CeO2–ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels. Electrochimica Acta 259:143–150

    Article  CAS  Google Scholar 

  51. Zhang J, Ji Y, Gao H, He T, Liu J (2005) Composite cathode La0. 6Sr0. 4Co0. 2Fe0. 8O3–Sm0. 1Ce0. 9O1. 95–Ag for intermediate-temperature solid oxide fuel cells. J Alloys 395:322–325

    Article  CAS  Google Scholar 

  52. Xie Y, Xiao J, Liu D, Liu J, Yang C (2015) Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode. J Electrochem Soc 162:F397–F402

    Article  CAS  Google Scholar 

  53. Küngas R (2020) electrochemical CO2 reduction for CO production: comparison of low-and high-temperature electrolysis technologies. J Electrochem Soc 167:044508

    Article  Google Scholar 

  54. Jones JP, Prakash GS, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Israel J Chem 54:1451–1466

    Article  CAS  Google Scholar 

  55. Zhenya Y, Weiping D, ZHANG Q, Ye W (2013) Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst. Chin J Catalysis 34:956–963

    Article  Google Scholar 

  56. Tsiotsias AI, Charisiou ND, Yentekakis IV, Goula MA (2020) The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts 10:812

    Article  CAS  Google Scholar 

  57. Guo Y, Mei S, Yuan K, Wang D-J, Liu H-C, Yan C-H, Zhang Y-W (2018) Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. Acs Catalysis 8:6203–6215

    Article  CAS  Google Scholar 

  58. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances 2:2358–2368

    Article  CAS  Google Scholar 

  59. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. Rsc Advances 5:22759–22776

    Article  CAS  Google Scholar 

  60. Kilner JA (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129:13–23

    Article  CAS  Google Scholar 

  61. Dholabhai PP, Adams JB, Crozier P, Sharma R (2010) A density functional study of defect migration in gadolinium doped ceria. Phys Chem Chem Phys 12:7904–7910

    Article  CAS  PubMed  Google Scholar 

  62. Su T, Li Y, Xue S, Xu Z, Zheng M, Xia C (2019) Kinetics of CO 2 electrolysis on composite electrodes consisting of Cu and samaria-doped ceria. J Mater Chem A 7:1598–1606

    Article  CAS  Google Scholar 

  63. MOMMA A, KATO T, KAGA Y, NAGATA S (1997) Polarization behavior of high temperature solid oxide electrolysis cells (SOEC). J Ceramic Soc Japan 105:369–373

    Article  CAS  Google Scholar 

  64. Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26:854–867

    Article  Google Scholar 

  65. Baysal Z, Kureti S (2020) CO2 methanation on Mg-promoted Fe catalysts. J Appl Catalysis B: Environ 262:118300

    Article  CAS  Google Scholar 

  66. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2020) Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts: effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass Bioenergy 138:105556

    Article  CAS  Google Scholar 

  67. Zarubina V, Melián-Cabrera I (2021) On the geometric trajectories of pores during the thermal sintering of relevant catalyst supports. Scripta Materialia 194:113679

    Article  CAS  Google Scholar 

  68. Janek J, Korte C (1999) Electrochemical blackening of yttria-stabilized zirconia–morphological instability of the moving reaction front. Solid State Ionics 116:181–195

    Article  CAS  Google Scholar 

  69. Vendrell X, West AR (2019) Induced p-type semiconductivity in yttria-stabilized zirconia. J Am Ceramic Soc 102:6100–6106

    Article  CAS  Google Scholar 

  70. Li K, Peng B, Peng T (2016) Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis 6:7485–7527

    Article  CAS  Google Scholar 

  71. Verma S, Kim B, Jhong HRM, Ma S, Kenis PJ (2016) A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9:1972–1979

    Article  CAS  PubMed  Google Scholar 

  72. De Heer JJJoCE (1957) The principle of le chatelier and braun. 34 375

  73. Navrotsky A, Mazeina L, Majzlan J (2008) Size-driven structural and thermodynamic complexity in iron oxides. J Science 319:1635–1638

    CAS  Google Scholar 

  74. Zhao X, Gong Y, Li X, Xu N, Huang K (2013) Performance of solid oxide iron-air battery operated at 550 C. J Electrochem Soc 160:A1241

    Article  CAS  Google Scholar 

  75. Niedermaier M, Schwab T, Kube P, Zickler GA, Trunschke A, Diwald O (2020) Catalytic activity, water formation, and sintering: methane activation over Co-and Fe-doped MgO nanocrystals. J Chem Phys 152:074713

    Article  CAS  PubMed  Google Scholar 

  76. Ponomar V, Brik O, Cherevko YI, Ovsienko V (2019) Kinetics of hematite to magnetite transformation by gaseous reduction at low concentration of carbon monoxide. Chem Eng Res Design 148:393–402

    Article  CAS  Google Scholar 

  77. Mnrrnnws A-l (1976) Magnetite forrnation by the reduction of hematite with iron under hydrothermal conditions. Am Mineralogist 6:927–932

    Google Scholar 

  78. Spreitzer D, Schenk J (2019) Reduction of iron oxides with hydrogen—a review, steel research international. 90 1900108.

Download references

Funding

This research is funded by the Research and Development Program (Renewable Hydrogen for Export) of the Australian Renewable Energy Agency (ARENA). Additional support has been received from CSIRO Hydrogen Energy Systems Future Science Platform and CSIRO Research Office. The funders were not involved in the experimental design or the collection, analysis and interpretation of data, or writing of the manuscript, or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha P. Kulkarni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Kulkarni, A.P., Seeber, A. et al. Fe-Ce0.1Zr0.9O2-Ag electrode for one-step methane synthesis in solid oxide electrolyser. Ionics 28, 329–340 (2022). https://doi.org/10.1007/s11581-021-04330-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04330-4

Keywords

Navigation