Skip to main content

Advertisement

Log in

Preparation and sodium ions storage performance of vanadium pentoxide/titanium dioxide composite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Vanadium pentoxide as the cathode material for sodium-ion batteries (SIBs) has attracted wide attention due to its high theoretical capacity, relatively low price, and easy preparation. However, the poor structural stability and bad electronic conductivity severely hamper its practical application. Herein, vanadium pentoxide/titanium dioxide (V2O5/TiO2) composite was prepared by a hydrothermal method with commercial vanadium pentoxide, hydrogen peroxide, and titanium dioxide as raw materials. Compared to pureV2O5, the V2O5/TiO2 composite exhibits higher sodium storage activity and better rate capability (with specific capacities of 141.7 and 31.6 mA h g−1 at 100 and 1000 mA g−1, respectively). SEM characterization shows that the V2O5 material changed from nanosheet morphology to nanorod morphology after compositing with TiO2. Cyclic voltammetry analysis reveals that the V2O5/TiO2 composite has obvious pseudocapacitive behavior during the discharge/charge processes. EIS analysis demonstrates that the introduction of TiO2 in V2O5 decreases the electrochemical reaction resistance upon repeated cycling. This work provides a simple and efficient method for the preparation of vanadium-based cathode material for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hameer S, Van Niekerk JL (2015) A review of large-scale electrical energy storage. Int J Energy Res 39:1179–1195

    Google Scholar 

  2. Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 27:778–788

    Google Scholar 

  3. Gür TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11:2696–2767

    Google Scholar 

  4. Eftekhari A (2019) Lithium batteries for electric vehicles: from economy to research strategy. ACS Sustain Chem Eng 7(6):5602–5613

    CAS  Google Scholar 

  5. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Google Scholar 

  6. Li M, Lu J, Chen Z, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):1800561

    Google Scholar 

  7. Yi T, Qu J, Lai X, Han X, Chang H, Zhu Y (2021) Toward high-performance Li storage anodes: design and construction of spherical carbon-coated CoNiO2 materials. Mater Today Chem 19:100407

    CAS  Google Scholar 

  8. Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58:715–766

    Google Scholar 

  9. Yi T, Sari HMK, Li X, Wang F, Zhu Y, Hu J, Zhang J, Li X (2021) A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 85:105955

    CAS  Google Scholar 

  10. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages challenges, and surprises. Angew Chem Int Ed 57:102–120

    CAS  Google Scholar 

  11. Delmas C (2018) Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 8(17):1703137

    Google Scholar 

  12. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    CAS  PubMed  Google Scholar 

  13. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv mater 27(36):5343–5364

    CAS  PubMed  Google Scholar 

  14. Luo W, Gaumet JJ, Mai L (2017) Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective. MRS Commun 7(2):152–165

    CAS  Google Scholar 

  15. Yao J, Li Y, Massé RC, Uchaker E, Cao G (2018) Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater 11:205–259

    Google Scholar 

  16. Yan D, Zhu X, Wang K, Gao X, Feng Y, Sun K, Liu Y (2016) Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. J Mater Chem A 4:4900–4907

    CAS  Google Scholar 

  17. Yi T, Qiu L, Qu J, Liu H, Zhang J, Zhu Y (2021) Towards high-performance cathodes: design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coord Chem Rev 446:214124

    CAS  Google Scholar 

  18. Cai Y, Fang G, Zhou J, Liu S, Luo Z, Pan A, Cao G, Liang S (2017) Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Res 11:449–463

    Google Scholar 

  19. Uchaker E, Zheng Y, Li S, Candelaria SL, Hu S, Cao G (2014) Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J Mater Chem A 2:18208–18214

    CAS  Google Scholar 

  20. Tang H, Peng Z, Wu L, Xiong F, Pei C, An Q, Mai L (2018) Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem Energy R 1:169–199

    CAS  Google Scholar 

  21. Wang G, Su D (2013) Single-crystalline bilayered v2o5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12):11218–11226

    PubMed  Google Scholar 

  22. Wei Q, Liu J, Feng W, Sheng J, Tian X, He L, An Q, Mai L (2015) Hydrated vanadium pentoxide with superior sodium storage capacity. J Mater Chem A 3:8070–8075

    CAS  Google Scholar 

  23. Kim H, Kim RH, Lee SS, Kim Y, Kim DY, Park K (2014) Effects of Ni doping on the initial electrochemical performance of vanadium oxide nanotubes for Na-ion batteries. ACS Appl Mater Interfaces 6(14):11692–11697

    CAS  PubMed  Google Scholar 

  24. Su D, Dou S, Wang G (2015) Hierarchical vanadium pentoxide spheres as high-performance anode materials for sodium-ion batteries. Chemsuschem 8(17):2877–2882

    CAS  PubMed  Google Scholar 

  25. Li F, Zhou Z (2018) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14(6):1702961

    Google Scholar 

  26. Li Y, Liu C, Xie Z, Yao J, Cao G (2017) Superior sodium storage performance of additive-free V2O5 thin film electrodes. J Mater Chem A 5:16590–16594

    CAS  Google Scholar 

  27. Li Y, Yao J, Uchaker E, Zhang M, Tian J, Liu X, Cao G (2013) Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C 117(45):23507–23514

    CAS  Google Scholar 

  28. Wang D, Cai P, Zou G, Hou H, Ji X, Tian Y, Long Z (2021) Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. https://doi.org/10.1007/s12598-021-01743-y

    Article  Google Scholar 

  29. Ding G, Zhu L, Yang Q, Xie L, Cao X, Wang Y, Liu J, Yang X (2020) NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Met 39:865–873

    CAS  Google Scholar 

  30. Li Y, Ji J, Yao J, Zhang Y, Huang B, Cao G (2021) Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. Sci China Mater 64:557–570

    CAS  Google Scholar 

  31. Liu C, Yao J, Zou Z, Li Y, Cao G (2019) Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater Today Energy 11:218–227

    CAS  Google Scholar 

  32. Muller-Bouvet D, Baddour-Hadjean R, Tanabe M, Huynh LTN, Le MLP, Pereira-Ramos JP (2015) Electrochemically formed α’-NaV2O5: a new sodium intercalation compound. Electrochim Acta 176:586–593

    CAS  Google Scholar 

  33. Yao J, Li Y, Pan G, Jin X, Luo K, Le S (2021) Electrochemical property of hierarchical flower-like α-Ni(OH)2 as an anode material for lithium-ion batteries. Solid State Ion 363:115595

    CAS  Google Scholar 

  34. Chu B, Liu S, You L, Liu D, Huang T, Li Y, Yu A (2020) Enhancing the cycling stability of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at a high cutoff voltage with Ta doping. ACS Sustain Chem Eng 8(8):3082–3090

    CAS  Google Scholar 

  35. Kurc B, Pigłowska M (2021) An influence of temperature on the lithium ions behavior for starch-based carbon compared to graphene anode for LIBs by the electrochemical impedance spectroscopy (EIS). J Power Sources 485:229323

    CAS  Google Scholar 

  36. Hong C, Leng Q, Zhu J, Zheng S, He H, Li Y, Liu R, Wan J, Yang Y (2020) Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. J Mater Chem A 8:8540–8547

    CAS  Google Scholar 

  37. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55(7):2384–2390

    CAS  Google Scholar 

  38. Yao J, Zhang Y, Yan J, Bin H, Li Y, Xiao S (2018) Nanoparticles-constructed spinel ZnFe2O4 anode material with superior lithium storage performance boosted by pseudocapacitance. Mater Res Bull 104:188–193

    CAS  Google Scholar 

  39. John W, Julien P, James L, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

    Google Scholar 

  40. Qi H, Cao L, Li J, Huang J, Xu Z, Cheng Y, Kong X, Yanagisawa K (2016) High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery. ACS Appl Mater Interfaces 8(51):35253–35263

    CAS  PubMed  Google Scholar 

  41. Pu X, Zhao D, Fu C, Chen Z, Cao S, Wang C, Cao Y (2021) Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem Int Ed 60(39):21310–21318

    CAS  Google Scholar 

  42. Li H, Zhou L, Zhang L, Fan C, Fan H, Wu X, Sun H, Zhang J (2017) Co3O4 nanospheres embedded in a nitrogen-doped carbon framework: an electrode with fast surface-controlled redox kinetics for lithium storage. ACS Energy Lett 2(1):52–59

    CAS  Google Scholar 

  43. Xiao Y, Xu C, Wang P, Fang H, Sun X, Ma F, Pei Y, Zhen L (2018) Encapsulating MnO nanoparticles within foam-like carbon nanosheet matrix for fast and durable lithium storage. Nano Energy 50:675–684

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51664012 and 22065010) and Guangxi Natural Science Foundation of China (2015GXNSFGA139006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Li or Jinhuan Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Chi, G. et al. Preparation and sodium ions storage performance of vanadium pentoxide/titanium dioxide composite. Ionics 27, 5179–5186 (2021). https://doi.org/10.1007/s11581-021-04292-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04292-7

Keywords

Navigation