Skip to main content
Log in

Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Global interest in the development of sodium-ion batteries (SIBs) continues, largely due to the advantage of the affordable cost of sodium resources (compared to lithium), which could produce cost-effective rechargeable batteries for large-scale applications. However, the discovery of reliable cathodes, tailored amorphous carbon anodes, and compatible electrolytes is required to yield safer, longer lasting SIBs with wide operating temperature. Among various cathodes systems, layered oxide cathodes are of great interest due to 230–245 mAhg−1 theoretical capacity with facile structure forming ability. Among the various phases of NaxCoO2 cathode, the P2 is the most favored, because of low polarization with enhanced structural stability and high theoretical capacity of 183 mAhg−1 for the empirical formula of Na0.74CoO2. Charge/discharge profiles of these systems exhibit plateaus, continuous changes in voltage and voltage drop, which impacts the electrochemical performance. This review discusses recent advancement in NaxCoO2 cathode in terms of the effect of particle morphology, size, crystal structure, electronic structure, cation and anion doping, sacrificial salt, Na deficiency, effect of electrolyte salts and solvents, and thermal safety. We present a comprehensive analysis of the recent developments in NaxCoO2 and its derivative cathode materials and propose various approaches to mitigate the challenges for the near future successful commercialization of SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  PubMed  Google Scholar 

  2. Directive RE (2017) Renewables get mature. Nature. Energy 2:17017. https://doi.org/10.1038/nenergy.2017.17

    Article  Google Scholar 

  3. Belharouak I (2012) – Lithium ion batteries – new developments Edited by Ilias Belharouak

  4. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3:1–11. https://doi.org/10.1038/natrevmats.2018.13

    Article  Google Scholar 

  5. Delmas C (2018) Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater 8:1–9. https://doi.org/10.1002/aenm.201703137

    Article  CAS  Google Scholar 

  6. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57:102–120. https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  7. Qi S, Wu D, Dong Y, Liao J, Foster CW, Dwyer CO, Feng Y, Liu C, Ma J (2019) Cobalt-based electrode materials for sodium-ion batteries. Chem Eng J 185–207. https://doi.org/10.1016/j.cej.2019.03.166

  8. Palomares V, Serras P, Villaluenga I, Hueso KB, Javier CG, Rojol T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901. https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  9. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Func Mater 23:947–958. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  10. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360. https://doi.org/10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  11. Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T (2013) Update on Na-based battery materials. A growing research path. Energy Environ Sci 6:2312–2337. https://doi.org/10.1039/c3ee41031e

    Article  CAS  Google Scholar 

  12. Tang J, Dysart AD, Pol VG (2015) Advancement in sodium-ion rechargeable batteries. Curr Opin Chem Eng 9:34–41. https://doi.org/10.1016/j.coche.2015.08.007

    Article  Google Scholar 

  13. Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4:253–278. https://doi.org/10.1002/wene.136

    Article  CAS  Google Scholar 

  14. Eftekhari A, Kim D-W (2018) Sodium-ion batteries: new opportunities beyond energy storage by lithium. J Power Sources 395:336–348. https://doi.org/10.1016/j.jpowsour.2018.05.089

    Article  CAS  Google Scholar 

  15. Lee JD (1999) Concise inorganic chemistry, 4Th edn. Chapmann & Hall, India

    Google Scholar 

  16. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/c6cs00776g

    Article  CAS  PubMed  Google Scholar 

  17. Wahid M, Puthusseri D, Gawli Y, Sharma N, Ogale S (2018) Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms. ChemSusChem 11:506–526. https://doi.org/10.1002/cssc.201701664

    Article  CAS  PubMed  Google Scholar 

  18. Adams RA, Varma A, Pol VG (2019) Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv Energy Mater 9:1900550–1900550. https://doi.org/10.1002/aenm.201900550

    Article  CAS  Google Scholar 

  19. Rodriguez JR, Aguirre SB, Pol VG (2019) Understanding sodium-ion battery anodes through operando spectroscopic techniques. Electrochim Acta 319:791–800. https://doi.org/10.1016/j.electacta.2019.07.030

    Article  CAS  Google Scholar 

  20. Rodriguez JR, Aguirre SB, Pol VG (2019) Role of operando microscopy techniques on the advancement of sustainable sodium-ion battery anodes. J Power Sources 437:226851. https://doi.org/10.1016/j.jpowsour.2019.226851

    Article  CAS  Google Scholar 

  21. Kubota K, Kumakura S, Yoda Y, Kuroki K, Komaba S (2018) Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv Energy Mater 8:1–30. https://doi.org/10.1002/aenm.201703415

    Article  CAS  Google Scholar 

  22. Zhou A, Xu Z, Gao H, Xue L, Li J, Goodenough JB (2019) Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small 15:1–6. https://doi.org/10.1002/smll.201902420

    Article  CAS  Google Scholar 

  23. Barpanda P, Lander L, Nishimura SI, Yamada A (2018) Polyanionic insertion materials for sodium-ion batteries. Adv Energy Mater 8:1–26. https://doi.org/10.1002/aenm.201703055

    Article  CAS  Google Scholar 

  24. Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF (2011) Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 23:3593–3600. https://doi.org/10.1021/cm200450y

    Article  CAS  Google Scholar 

  25. Lu Y, Zhang S, Li Y, Xue L, Xu G, Zhang X (2014) Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J Power Sources 247:770–777. https://doi.org/10.1016/j.jpowsour.2013.09.018

    Article  CAS  Google Scholar 

  26. Yuvaraj S, Oh W, Yoon W-S (2019) Recent progress on sodium vanadium fluorophosphates for high voltage sodium-ion battery application. J Electrochem Sci Technol 10:1–13. https://doi.org/10.5229/JECST.2019.10.1.1

    Article  CAS  Google Scholar 

  27. Barpanda P, Ye T, Avdeev M, Chung SC, Yamada A (2013) A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J Mater Chem A 1:4194–4197. https://doi.org/10.1039/c3ta10210f

    Article  CAS  Google Scholar 

  28. Ha KH, Woo SH, Mok D et al (2013) Na4-αM2+α/2(P2O 7)2 (2/3≤α≤ 7/8, M = Fe, Fe 0.5Mn0.5, Mn): a promising sodium ion cathode for na-ion batteries. Adv Energy Mater 3:770–776. https://doi.org/10.1002/aenm.201200825

    Article  CAS  Google Scholar 

  29. Barpanda P, Ye T, Nishimura SI, Chung SC, Yamada Y, Okubo M, Zhou H, Yamada A (2012) Sodium iron pyrophosphate: a novel 3.0 v iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119. https://doi.org/10.1016/j.elecom.2012.08.028

    Article  CAS  Google Scholar 

  30. Barpanda P, Liu G, Avdeev M, Yamada A (2014) t-Na2(VO)P2O7: a 3.8V pyrophosphate insertion material for sodium-ion batteries. ChemElectroChem 1:1488–1491. https://doi.org/10.1002/celc.201402095

    Article  CAS  Google Scholar 

  31. Nose M, Shiotani S, Nakayama H, Nobuhara K, Nakanishi H, Iba H (2013) Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochem Commun 34:266–269. https://doi.org/10.1016/j.elecom.2013.07.004

    Article  CAS  Google Scholar 

  32. Nose M, Nakayama H, Nobuhara K, Yamaguchi H, Nakanishi S, Iba H (2013) Na4Co3(PO4)2P2O 7: a novel storage material for sodium-ion batteries. J Power Sources 234:175–179. https://doi.org/10.1016/j.jpowsour.2013.01.162

    Article  CAS  Google Scholar 

  33. Lim SY, Kim H, Chung J et al (2014) Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc Natl Acad Sci 111:599–604. https://doi.org/10.1073/pnas.1316557110

    Article  CAS  PubMed  Google Scholar 

  34. Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Structural, transport, and electrochemical investigation of novel AMSO 4F (A = Na, Li; M = Fe Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49:7401–7413. https://doi.org/10.1021/ic100583f

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Hao Q, Zivkovic O et al (2013) Sidorenkite (Na3MnPO4CO3): a new intercalation cathode material for Na-ion batteries. Chem Mater 25:2777–2786. https://doi.org/10.1021/cm400805q

    Article  CAS  Google Scholar 

  36. Li S, Guo J, Ye Z et al (2016) Zero-strain Na2FeSiO4 as novel cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 8:17233–17238. https://doi.org/10.1021/acsami.6b03969

    Article  CAS  PubMed  Google Scholar 

  37. Treacher JC, Wood SM, Islam MS, Kendrick E (2016) Na 2 CoSiO 4 as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways. Phys Chem Chem Phys 18:32744–32752. https://doi.org/10.1039/C6CP06777H

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Hua W, Xiao J et al (2019) NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat Commun 10:1480. https://doi.org/10.1038/s41467-019-09170-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S, Yu Y (2019) Na 3 V 2 (PO 4) 3: An advanced cathode for sodium-ion batteries. Nanoscale 11:2556–2576

    Article  CAS  PubMed  Google Scholar 

  40. Dimov N, Nishimura A, Chihara K, Kitajou A, Gocheva ID, Okada S (2013) Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium-ion and sodium-ion batteries. Electrochim Acta 110:214–220. https://doi.org/10.1016/j.electacta.2013.05.103

    Article  CAS  Google Scholar 

  41. Yamada Y, Doi T, Tanaka I, Okada S, Yamaki J (2011) Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries. J Power Sources 196:4837–4841. https://doi.org/10.1016/j.jpowsour.2011.01.060

    Article  CAS  Google Scholar 

  42. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544. https://doi.org/10.1039/c2cc31777j

    Article  CAS  Google Scholar 

  43. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4:3680. https://doi.org/10.1039/c1ee01782a

    Article  CAS  Google Scholar 

  44. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102. https://doi.org/10.1039/C4EE03192J

    Article  CAS  Google Scholar 

  45. Wei F, Zhang Q, Zhang P, Tian W, Dai K, Zhang L, Mao J, Shao G (2021) Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries. J Electrochem Soc 168:050524. https://doi.org/10.1149/1945-7111/abf9bf

    Article  CAS  Google Scholar 

  46. Kato K, Kasai H, Hori A et al (2016) Superionic conduction in co-vacant P2-NaxCoO2 created by hydrogen reductive elimination. Chem Asian J 11:1537–1541. https://doi.org/10.1002/asia.201600370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10:74–80. https://doi.org/10.1038/nmat2920

    Article  CAS  PubMed  Google Scholar 

  48. Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158:A1307–A1312. https://doi.org/10.1149/2.035112jes

    Article  CAS  Google Scholar 

  49. Vassilaras P, Ma XL, Ceder G (2011) Electrochemical properties of monoclinic NaNiO2. J Electrochem Soc 158:A207–A211

    Article  Google Scholar 

  50. Lu Z, Dahn JR (2001) In situ X-ray diffraction study of P2-Na[sub 2/3][Ni[sub 1/3]Mn[sub 2/3]]O[sub 2]. J Electrochem Soc 148:A1225–A1229. https://doi.org/10.1149/1.1407247

    Article  CAS  Google Scholar 

  51. Yabuuchi N, Kajiyama M, Iwatate J et al (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11:512–517. https://doi.org/10.1038/nmat3309

    Article  CAS  PubMed  Google Scholar 

  52. Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I (2012) Study on the reversible electrode reaction of Na(1–x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. Inorg Chem 51:6211–6220. https://doi.org/10.1021/ic300357d

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Zhang X, Yang X, Wang J, Deng J, Wang Y (2020) Co3O4-modified P2–Na2/3Mn0.75Co0.25O2 cathode for Na-ion batteries with high capacity and excellent cyclability. J Alloys Compds 832:154960. https://doi.org/10.1016/j.jallcom.2020.154960

    Article  CAS  Google Scholar 

  54. Sathiya M, Hemalatha K, Ramesha K, Tarascon JM, Prakash AS (2012) Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem Mater 24:1846–1853. https://doi.org/10.1021/cm300466b

    Article  CAS  Google Scholar 

  55. Vassilaras P, Toumar AJ, Ceder G (2014) Electrochemical properties of NaNi1/3Co1/3Fe 1/3O2 as a cathode material for Na-ion batteries. Electrochem Commun 38:79–81. https://doi.org/10.1016/j.elecom.2013.11.015

    Article  CAS  Google Scholar 

  56. Hwang JY, Myung ST, Yoon CS, Kim SS, Aurbach D, Sun YK (2016) Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na[Ni0.61Co0.12Mn0.27]O2 assembled in spherical secondary particles. Adv Funct Mater 26:8083–8093. https://doi.org/10.1002/adfm.201603439

    Article  CAS  Google Scholar 

  57. Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS (2012) Layered Na[Ni 1/3Fe 1/3Mn 1/3]O 2 cathodes for Na-ion battery application. Electrochem Commun 18:66–69. https://doi.org/10.1016/j.elecom.2012.02.020

    Article  CAS  Google Scholar 

  58. Kaliyappan K, Xaio W, Sham TK, Sun X (2018) High tap density Co and Ni containing P2-Na0.66MnO2 buckyballs: a promising high voltage cathode for stable sodium-ion batteries. Adv Funct Mater 28:1–10. https://doi.org/10.1002/adfm.201801898

    Article  CAS  Google Scholar 

  59. Gençtürk S, Uzun D, Yeşilot S (2020) Investigation of sodium content on the electrochemical performance of the Nax(Fe0.35Mn0.35Co0.3)O2 (x = 0.5, 0.6, 0.7, 0.8, 0.9) for sodium-ion batteries. Ionics 26:223–231. https://doi.org/10.1007/s11581-019-03211-1

    Article  CAS  Google Scholar 

  60. Li X, Wu D, Zhou Y, Liu L, Yang XQ, Ceder G (2014) O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem Commun 49:51–54. https://doi.org/10.1016/j.elecom.2014.10.003

    Article  CAS  Google Scholar 

  61. Yue JL, Zhou YN, Yu X, Bak SM, Yang XQ, Fu ZW (2015) O3-type layered transition metal oxide Na(NiCoFeTi) 1/4 O 2 as a high rate and long cycle life cathode material for sodium ion batteries. J Mater Chem A 3:23261–23267. https://doi.org/10.1039/C5TA05769H

    Article  CAS  Google Scholar 

  62. Hwang JY, Myung ST, Sun YK (2018) Quaternary transition metal oxide layered framework: O3-type Na[Ni0.32Fe0.13Co0.15Mn0.40]O2 cathode material for high-performance sodium-ion batteries. J Phys Chem C 122:13500–13507. https://doi.org/10.1021/acs.jpcc.7b12140

    Article  CAS  Google Scholar 

  63. Wang L, Wang Y, Yang X, Wang J, Yang X, Tang J (2019) Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries. J Mater Sci 54:12723–12736. https://doi.org/10.1007/s10853-019-03807-y

    Article  CAS  Google Scholar 

  64. Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S (2014) A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J Mater Chem A 2:16851–16855. https://doi.org/10.1039/c4ta04351k

    Article  CAS  Google Scholar 

  65. Kataoka R, Mukai T, Yoshizawa A, Sakai T (2013) Development of high capacity cathode material for sodium ion batteries Na 0.95 Li 0.15 (Ni 0.15 Mn 0.55 Co 0.1)O 2. J Electrochem Soc 160:A933–A939. https://doi.org/10.1149/2.125306jes

    Article  CAS  Google Scholar 

  66. Xiao J, Zhang F, Tang K et al (2019) Rational design of a P2-type spherical layered oxide cathode for high-performance sodium-ion batteries. ACS Cent Sci 5:1937–1945. https://doi.org/10.1021/acscentsci.9b00982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao L, Chen S, Zhang L, Yang X (2019) High areal capacity Na 0.67 CoO 2 bundle array cathode tailored for high-performance sodium-ion batteries. ChemElectroChem 6:947–952. https://doi.org/10.1002/celc.201900031

    Article  CAS  Google Scholar 

  68. Nazri G-A, Pistoia G (2003) Lithium Batteries. Springer, NY

    Book  Google Scholar 

  69. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  PubMed  Google Scholar 

  70. Fouassier C, Matejka G, Reau J, Hagenmuller P (1973) Sur de Nouveaux Bronzes Oxyg6n6s de Formule Na~CoO2 (x. J Solid State Chem 6:532–537

    Article  CAS  Google Scholar 

  71. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721. https://doi.org/10.1002/aenm.201200026

    Article  CAS  Google Scholar 

  72. Molenda J, Baster D, Molenda M, Swierczek K, Tobolo J (2014) Anomaly in the electronic structure of the NaxCoO2−y cathode as a source of its step-like discharge curve. Phys Chem Chem Phys 16:14845–14857. https://doi.org/10.1039/c3cp55223c

    Article  CAS  PubMed  Google Scholar 

  73. Sabi N, Sarapulova A, Indris S, Ehrenberg H, Alami J, Saadoune J (2017) Effect of titanium substitution in a P2-Na2/3Co0.95Ti0.05O2 cathode material on the structural and electrochemical properties. ACS Appl Mater Interfaces 9:37778–37785. https://doi.org/10.1021/acsami.7b11636

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Zhang R, Huang Y (2019) Air-stable NaxTMO2 cathodes for sodium storage. Front Chem 7:1–15. https://doi.org/10.3389/fchem.2019.00335

    Article  CAS  Google Scholar 

  75. Zheng L, Li J, Obrovac MN (2017) Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3-xCuxMn2/3O2 in sodium cells. Chem Mater 29:1623–1631. https://doi.org/10.1021/acs.chemmater.6b04769

    Article  CAS  Google Scholar 

  76. Tripathi A, Rudola A, Gajjela SR, Xi S, Balaya P (2019) Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. J Mater Chem A 7:25944–25960. https://doi.org/10.1039/c9ta08991h

    Article  CAS  Google Scholar 

  77. Xiao Y, Abbasi NM, Zhu YF et al (2020) Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv Func Mater 1:2001334. https://doi.org/10.1002/adfm.202001334

    Article  CAS  Google Scholar 

  78. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364. https://doi.org/10.1002/adma.201501527

    Article  CAS  PubMed  Google Scholar 

  79. Yuan S, Liu YB, Xu D, Ma DL, Wang S, Yang XH, Cao ZY, Zhang XB (2015) Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv Sci 2:1–6. https://doi.org/10.1002/advs.201400018

    Article  CAS  Google Scholar 

  80. Deng YP, Wu ZG, Liang R, Jiang Y, Luo D, Yu A, Chen Z (2019) Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater 29:1–24. https://doi.org/10.1002/adfm.201808522

    Article  CAS  Google Scholar 

  81. Fang Y, Yu XY, Lou XWD (2017) A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew Chem Int Ed 56:5801–5805. https://doi.org/10.1002/anie.201702024

    Article  CAS  Google Scholar 

  82. Yan P, Zheng J, Liu J et al (2018) Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 3:600–605. https://doi.org/10.1038/s41560-018-0191-3

    Article  CAS  Google Scholar 

  83. Claude DELMAS, Jean-Jacques BRACONNIERCF, Hagenmuller P (1981) Electrochemical intercalation of sodium in graphite. Solid State Ionics 3(4):165–169. https://doi.org/10.1016/0167-2738(88)90351-7

    Article  Google Scholar 

  84. Kim S, Ma X, Ong SP, Ceder G (2012) A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys Chem Chem Phys 14:15571–15578. https://doi.org/10.1039/c2cp43377j

    Article  CAS  PubMed  Google Scholar 

  85. Lei Y, Li X, Liu L, Ceder G (2014) Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem Mater 26:5288–5296. https://doi.org/10.1021/cm5021788

    Article  CAS  Google Scholar 

  86. Liu L, Li X, Bo SH, Wang Y, Chen H, Twu N, Wu D, Ceder G (2015) High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Adv Energy Mater 5:1–5. https://doi.org/10.1002/aenm.201500944

    Article  CAS  Google Scholar 

  87. Shacklette LW, Jow TR, Townsend S (1988) Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc 135:2669–2674. https://doi.org/10.1149/1.2095407

    Article  CAS  Google Scholar 

  88. Kang SM, Park JH, Jin A, Jung YH, Mun J, Sung YE (2018) Na+/vacancy disordered P2-Na0.67Co1-xTixO2: high-energy and high-power cathode materials for sodium ion batteries. ACS Appl Mater Interfaces 10:3562–3570. https://doi.org/10.1021/acsami.7b16077

    Article  CAS  PubMed  Google Scholar 

  89. Arienzo MD, Ruffo R, Scotti R, Morazzoni F, Mari CM, Polizzi S (2012) Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Phys Chem Chem Phys 14:5945–5952. https://doi.org/10.1039/c2cp40699c

    Article  CAS  PubMed  Google Scholar 

  90. Rai AK, Anh LT, Gim J, Mathew V, Kim J (2014) Electrochemical properties of NaxCoO2 (x–0.71) cathode for rechargeable sodium-ion batteries. Ceram Int 40:2411–2417. https://doi.org/10.1016/j.ceramint.2013.08.013

    Article  CAS  Google Scholar 

  91. Reddy BVR, Gopukumar S (2013) NaxCoO2 cathode material: Synthesized by inverse micro-emulsion method for sodium ion batteries. ECS Trans 53:49–58. https://doi.org/10.1149/05330.0049ecst

    Article  CAS  Google Scholar 

  92. Rami Reddy BV, Ravikumar R, Nithya C, Gopukumar S (2015) High performance Na x CoO 2 as a cathode material for rechargeable sodium batteries. J Mater Chem A 3:18059–18063. https://doi.org/10.1039/C5TA03173G

    Article  CAS  Google Scholar 

  93. Peng B, Sun Z, Jiao S et al (2019) Facile self-templated synthesis of P2-type Na0.7CoO2 microsheets as a long-term cathode for high-energy sodium-ion batteries. J Mater Chem A 7:13922–13927. https://doi.org/10.1039/c9ta02966d

    Article  CAS  Google Scholar 

  94. Hwang S, Lee Y, Jo E, Chung KY, Choi W, Kim SM, Chang W (2017) Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Appl Mater Interfaces 9:18883–18888. https://doi.org/10.1021/acsami.7b04478

    Article  CAS  PubMed  Google Scholar 

  95. Palanisamy M, Reddy Boddu VR, Shirage PM, Pol VG (2021) Discharge state of layered P2-type cathode reveals unsafe than charge condition in thermal runaway event for sodium-ion batteries. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c04482

    Article  PubMed  Google Scholar 

  96. Carlier D, Cheng JH, Berthelot R, Guignard YM, Stoyanova R, Hwang BJ, Delmas C (2011) The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 40:9306–9312. https://doi.org/10.1039/c1dt10798d

    Article  CAS  PubMed  Google Scholar 

  97. Molenda J, Delmas C, Dordor P, Stokzosa A (1989) Transport properties of Na, CoOz _ y. Solid State Ionics 12:473–477

    Article  Google Scholar 

  98. Chou FC, Abel ET, Cho JH, Lee YS (2005) Electrochemical de-intercalation, oxygen non-stoichiometry, and crystal growth of NaxCoO2-δ. J Phys Chem Solids 66:155–160. https://doi.org/10.1016/j.jpcs.2004.08.042

    Article  CAS  Google Scholar 

  99. Beck FR, Cheng YQ, Bi Z et al (2014) Neutron diffraction and electrochemical studies of Na 0.79 CoO 2 and Na 0.79 Co 0.7 Mn 0.3 O 2 cathodes for sodium-ion batteries. J Electrochem Soc 161:A961–A967. https://doi.org/10.1149/2.025406jes

    Article  CAS  Google Scholar 

  100. Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2-Na2/3MnyCo 1- yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551. https://doi.org/10.1021/jp406433z

    Article  CAS  Google Scholar 

  101. Zhu YE, Qi X, Chen X, Zhou X, Zhang X, Wei J, Hu Y, Zhou Z (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109. https://doi.org/10.1039/c6ta02845d

    Article  CAS  Google Scholar 

  102. Bianchini M, Wang J, Clément R, Ceder G (2018) A first-principles and experimental investigation of nickel solubility into the P2 Na x CoO 2 sodium-ion cathode. Adv Energy Mater 8:1801446. https://doi.org/10.1002/aenm.201801446

    Article  CAS  Google Scholar 

  103. Guo S, Yi J, Sun Y, Zhou H (2016) Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ Sci 9:2978–3006. https://doi.org/10.1039/c6ee01807f

    Article  CAS  Google Scholar 

  104. Sabi N, Doubaji S, Hashimoto K et al (2017) Layered P2-Na2/3Co1/2Ti1/2O2 as a high-performance cathode material for sodium-ion batteries. J Power Sources 342:998–1005. https://doi.org/10.1016/j.jpowsour.2017.01.025

    Article  CAS  Google Scholar 

  105. Hakim C, Sabi N, Ma LA et al (2020) Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries. Commun Chem 3:1–9. https://doi.org/10.1038/s42004-020-0257-6

    Article  CAS  Google Scholar 

  106. Han SC, Lim H, Jeong J, Ahn D, Park WB, Sohn KS, Pyo M (2015) Ca-doped Na x CoO 2 for improved cyclability in sodium ion batteries. J Power Sources 277:9–16. https://doi.org/10.1016/j.jpowsour.2014.11.150

    Article  CAS  Google Scholar 

  107. Su J, Pei Y, Yang Z, Wang X (2015) First-principles investigation on the structural, electronic properties and diffusion barriers of Mg/Al doped NaCoO 2 as the cathode material of rechargeable sodium batteries. RSC Adv 5:27229–27234. https://doi.org/10.1039/C5RA01895A

    Article  CAS  Google Scholar 

  108. Jugović D, Milović M, Popović M, Kusigerski V, Skapin S, Rakosevic Z, Mitric M (2019) Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. J Alloy Compd 774:30–37. https://doi.org/10.1016/j.jallcom.2018.09.372

    Article  CAS  Google Scholar 

  109. Yue P, Wang Z, Guo H, Xiong X, Li X (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochim Acta 92:1–8. https://doi.org/10.1016/j.electacta.2013.01.018

    Article  CAS  Google Scholar 

  110. Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R (2019) Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 31:1808393. https://doi.org/10.1002/adma.201808393

    Article  CAS  Google Scholar 

  111. Ding JJ, Zhou YN, Sun Q, Yu XQ, Yang XQ, Fu ZW (2013) Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim Acta 87:388–393. https://doi.org/10.1016/j.electacta.2012.09.058

    Article  CAS  Google Scholar 

  112. Bhide A, Hofmann J, Katharina Dürr A, Janek J, Adelhelm P (2014) Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Phys Chem Chem Phys 16:1987–1998. https://doi.org/10.1039/c3cp53077a

    Article  CAS  PubMed  Google Scholar 

  113. Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR (2012) In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci 5:8572–8583. https://doi.org/10.1039/c2ee22258b

    Article  CAS  Google Scholar 

  114. Bouibes A, Takenaka N, Fujie T, Kubota K, KOmaba S, Nagaoka M, (2018) Concentration effect of fluoroethylene carbonate on the formation of solid electrolyte interphase layer in sodium-ion batteries. ACS Appl Mater Interfaces 10:28525–28532. https://doi.org/10.1021/acsami.8b07530

    Article  CAS  PubMed  Google Scholar 

  115. Liu H, Cheng X-B, Jin Z et al (2019) Recent advances in understanding dendrite growth on alkali metal anodes. Energy Chem 1:100003. https://doi.org/10.1016/j.enchem.2019.100003

    Article  Google Scholar 

  116. Chen L, Fiore M, Wang JE, Ruffo R, Kim DK, Lomoni G (2018) Readiness level of sodium-ion battery technology: a materials review. Adv Sustain Syst 2:1700153. https://doi.org/10.1002/adsu.201700153

    Article  CAS  Google Scholar 

  117. Tang J, Kye DK, Pol VG (2018) Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries. J Power Sources 396:476–482. https://doi.org/10.1016/j.jpowsour.2018.06.067

    Article  CAS  Google Scholar 

  118. Singh G, Acebedo B, Cabanas MC, Shanmukaraj D, Armand M, Roj T (2013) An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2. Electrochem Commun 37:61–63. https://doi.org/10.1016/j.elecom.2013.10.008

    Article  CAS  Google Scholar 

  119. Martinez De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Sing G (2017) NaN 3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na 0.67 [Fe 0.5 Mn 0.5 ]O 2 cathode for sodium-ion battery. J Power Sources 337:197–203. https://doi.org/10.1016/j.jpowsour.2016.10.084

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Indian Institute of Technology, Indore, India, and Davidson School of Chemical Engineering, Purdue University, USA.

Author information

Authors and Affiliations

Authors

Contributions

B. Venkata Rami Reddy (B.V.R.R.): writing draft and editing; Dhanya Puthusseri (D.P.): writing manuscript & editing; Parasharam M. Shirage: reviewing and editing; Pradeep Mathur: reviewing and editing; and Vilas G. Pol: planning, execution, reviewing and editing.

Corresponding authors

Correspondence to Venkata Rami Reddy Boddu, Dhanya Puthusseri or Parasharam M. Shirage.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boddu, V.R.R., Puthusseri, D., Shirage, P.M. et al. Layered NaxCoO2-based cathodes for advanced Na-ion batteries: review on challenges and advancements. Ionics 27, 4549–4572 (2021). https://doi.org/10.1007/s11581-021-04265-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04265-w

Keywords

Navigation