Skip to main content
Log in

Synthesis and characterization of ZnO/samarium-doped ceria nanocomposites for solid oxide fuel cell applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, we prepare samarium-doped ceria (SDC) nanocomposite electrolytes by the co-precipitation method with different ZnO:SDC weight ratios for solid oxide fuel cell application. The physicochemical characterization of the nanocomposite electrolytes is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Electrochemical impedance spectroscopy is performed to measure the electrical properties of the electrolytes, and the results show that the optimum composition of ZnO (x = 0.2) nanocomposite demonstrates a better ionic conductivity ~ 0.1–0.7 S/cm at 350–700 °C. The fuel cell performance of the ZnO/SDC nanocomposite electrolytes is measured with hydrogen as the fuel. The as-synthesized nanocomposite material with ZnO (x = 0.2) also exhibits a power density of 804 mW/cm2 along with a maximum open-circuit voltage (OCV) of 1.10 V at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arshad MS et al (2018) An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells. Ceram Int 44:170–174. https://doi.org/10.1016/j.ceramint.2017.09.155

    Article  CAS  Google Scholar 

  2. Raza R et al (2011) GDC- Y2O3 oxide based two phase nanocomposite electrolyte. J Fuel Cell Sci Technol 8:041012. https://doi.org/10.1115/1.4003634

  3. Qian X et al (2020) CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science (80) 370:596–600. https://doi.org/10.1126/SCIENCE.ABB9704

    Article  CAS  Google Scholar 

  4. Chen G et al (2019) Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS Appl Mater Interfaces 11:10642–10650. https://doi.org/10.1021/acsami.8b20454

    Article  CAS  PubMed  Google Scholar 

  5. Ding C et al (2009) Synthesis of NiO-Ce0.9Gd0.1O1.95 nanocomposite powders for low-temperature solid oxide fuel cell anodes by co-precipitation. Scr Mater 60:254–256. https://doi.org/10.1016/j.scriptamat.2008.10.020

    Article  CAS  Google Scholar 

  6. Hussain S et al (2021) Effect of iron oxide co-doping on structural, thermal, and electrochemical properties of samarium doped ceria solid electrolyte. Mater Chem Phys 267:124576. https://doi.org/10.1016/j.matchemphys.2021.124576

  7. Venkataramana K et al (2020) Triple-doped ceria–carbonate (Ce0.82La0.06Sm0.06Gd0.06O2-δ– (Li–Na)2CO3) nanocomposite solid electrolyte materials for LT–SOFC applications. Ceram Int 46:27584–27594. https://doi.org/10.1016/j.ceramint.2020.07.252

    Article  CAS  Google Scholar 

  8. Raza R et al (2010) Study on calcium and samarium co-doped ceria based nanocomposite electrolytes. J Power Sources 195:6491–6495. https://doi.org/10.1016/j.jpowsour.2010.04.031

    Article  CAS  Google Scholar 

  9. Al-Gaashani R et al (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39:2283–2292. https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  CAS  Google Scholar 

  10. Xia C et al (2018) Study on zinc oxide-based electrolytes in low-temperature solid oxide fuel cells. Materials (Basel) 11:40. https://doi.org/10.3390/ma11010040

    Article  CAS  Google Scholar 

  11. Wu Y et al (2018) Natural hematite ore composited with ZnO nanoneedles for energy applications. Compos B Eng 137:178–183. https://doi.org/10.1016/j.compositesb.2017.11.020

    Article  CAS  Google Scholar 

  12. Maky S et al (2019) The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells. Int J Hydrogen Energy 44:30319–30327. https://doi.org/10.1016/j.ijhydene.2019.09.145

    Article  CAS  Google Scholar 

  13. Liu Y et al (2006) Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia. Solid State Ionics 177:159–163. https://doi.org/10.1016/j.ssi.2005.10.002

    Article  CAS  Google Scholar 

  14. Qiao Z et al (2018) Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J Power Sources 392:33–40. https://doi.org/10.1016/j.jpowsour.2018.04.096

    Article  CAS  Google Scholar 

  15. Xia C et al (2019) Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 10:1707. https://doi.org/10.1038/s41467-019-09532-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C et al (2016) Preparation of SDC-NC nanocomposite electrolytes with elevated densities: influence of prefiring and sintering treatments on their microstructures and electrical conductivities. RSC Adv 6:99615–99624. https://doi.org/10.1039/c6ra15680k

    Article  CAS  Google Scholar 

  17. Zhang J et al (2018) The heterogeneous electrolyte of CuFeO2 nano-flakes composited with flower-shaped ZnO for advanced solid oxide fuel cells. Int J Hydrogen Energy 43:12789–12796. https://doi.org/10.1016/j.ijhydene.2018.04.020

    Article  CAS  Google Scholar 

  18. Santra C et al (2016) Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC Adv 6:45330–45342. https://doi.org/10.1039/c6ra05216a

    Article  CAS  Google Scholar 

  19. Accardo G et al (2018) Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram Int 44:3800–3809. https://doi.org/10.1016/j.ceramint.2017.11.165

    Article  CAS  Google Scholar 

  20. Li P et al (2020) Effect of Fe, Ni and Zn dopants in La0·9Sr0·1CoO3 on the electrochemical performance of single-component solid oxide fuel cell. Int J Hydrogen Energy 45:11802–11813. https://doi.org/10.1016/j.ijhydene.2020.02.116

    Article  CAS  Google Scholar 

  21. Li L et al (2018) Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int J Hydrogen Energy 43:12909–12916. https://doi.org/10.1016/j.ijhydene.2018.05.120

    Article  CAS  Google Scholar 

  22. Zhu B et al (2013) A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2:1179–1185. https://doi.org/10.1016/j.nanoen.2013.05.001

    Article  CAS  Google Scholar 

  23. Zhang W et al (2016) Mixed ionic-electronic conductor membrane based fuel cells by incorporating semiconductor Ni0.8Co0.15Al0.05LiO2−δinto the Ce0.8Sm0.2O2−δ-Na2CO3 electrolyte. Int J Hydrogen Energy 41:15346–15353. https://doi.org/10.1016/j.ijhydene.2016.07.032

    Article  CAS  Google Scholar 

  24. Rafique A et al (2020) Multioxide phase-based nanocomposite electrolyte (M@SDC where M= Zn2+/ Ba2+/ La3+/Zr2+/Al3+) materials. Ceram Int 46:6882–6888. https://doi.org/10.1016/j.ceramint.2019.11.183

    Article  CAS  Google Scholar 

  25. Chen G et al (2018) Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int J Hydrogen Energy 43:417–425. https://doi.org/10.1016/j.ijhydene.2017.11.056

  26. Fan L et al (2014) Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell. J Mater Chem A 2:5399–5407. https://doi.org/10.1039/c3ta14098a

    Article  CAS  Google Scholar 

  27. Zhu B et al (2009) Solid oxide fuel cell (SOFC) technical challenges and solutions from nano-aspects. Int J Energy Res 33:1126–1137. https://doi.org/10.1002/er.1600

Download references

Acknowledgements

The authors thank Prof. Ding Xi Feng for the help on EIS measurements from Nanjing University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saddam Hussain or Yangping Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Li, Y., Mustehsin, A. et al. Synthesis and characterization of ZnO/samarium-doped ceria nanocomposites for solid oxide fuel cell applications. Ionics 27, 4849–4857 (2021). https://doi.org/10.1007/s11581-021-04246-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04246-z

Keywords

Navigation