Skip to main content

Advertisement

Log in

Biomass-derived carbon frameworks for oxygen and carbon dioxide electrochemical reduction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Synthesis of novel bifunctional electrocatalysts based on nitrogen-doped carbon materials for both O2- and CO2- reduction reactions (ORR and CO2RR) becomes a promising strategy to promote the development of energy storage and the carbon cycle. Herein, insect-wing-derived carbon frameworks are synthesized via a one-step pyrolysis to implement the electroreduction of O2 and CO2. A four-electron dominated process, identical to the Pt-catalyzed ORR, but better methanol tolerance and electrochemical stabilities, is validated using the resulting catalysts. Further, they exhibit 24.3–56.4% faradic efficiencies for CO production at a moderate applied potential (– 0.9 V) and good durabilities (20 h). This efficient performance can be ascribed to the structural advantages and the nitrogen dopants. The present work provides a novel strategy for developing bifunctional electrocatalysts without the use of extensive synthesis procedures.

Graphical abstract

Insect-wing-derived carbon frameworks were developed as bifunctional catalysts for oxygen and carbon dioxide reduction. The revealed activity difference of these carbon frameworks can provide some guideline for designing advanced bifunctional electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu G, Zelenay P (2013) Acc Chem Res 46:1878–1889

    Article  CAS  PubMed  Google Scholar 

  2. Lan Y, Gai C, Kenis PJA, Lu J (2014) ChemElectroChem 1:1577–1582

    Article  CAS  Google Scholar 

  3. Mao X, Hatton TA (2015) Ind Eng Chem Res 54:4033–4042

    Article  CAS  Google Scholar 

  4. Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S (2017) Adv Mater 29:1701784

    Article  CAS  Google Scholar 

  5. Li Q, Cao R, Cho J, Wu G (2014) Adv Energy Mater 4:1301415

    Article  CAS  Google Scholar 

  6. Sahoo NG, Pan Y, Li L, Chan SH (2012) Adv Mater 24:4203–4210

    Article  CAS  PubMed  Google Scholar 

  7. He DS, He D, Wang J, Lin Y, Yin P, Hong X, Wu Y, Li Y (2016) J Am Chem Soc 138:1494–1497

    Article  CAS  PubMed  Google Scholar 

  8. J Li HM, Yin XB, Li E, Okunishi YL, Shen J, He ZK, Tang WX, Wang E, Yücelen C, Li Y, Gong L, Gu S, Miao LM, Liu J, Luo Y Ding (2017). Nature Energy, 2 17111

  9. Rana M, Subramani K, Sathish M, Gautam UK (2017) Carbon 114:679–689

    Article  CAS  Google Scholar 

  10. Asefa T (2016) Acc Chem Res 49:1873–1883

    Article  CAS  PubMed  Google Scholar 

  11. Pan F, Cao Z, Zhao Q, Liang H, Zhang J (2014) J Power Sources 272:8–15

    Article  CAS  Google Scholar 

  12. Chen P, Wang L-K, Wang G, Gao M-R, Ge J, Yuan W-J, Shen Y-H, Xie A-J, Yu S-H (2014) Energy Environ Sci 7:4095–4103

    Article  CAS  Google Scholar 

  13. Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nanoscale 8:8704–8711

    Article  CAS  PubMed  Google Scholar 

  14. Chung HT, Won JH, Zelenay P (2013). Nat Commun 4 1922

  15. Lei Z, Xiao Y, Dang L, You W, Hu G, Zhang J (2007) Chem Mater 19:477–484

    Article  CAS  Google Scholar 

  16. Yang F, Jiang C, Ma M, Shu F, Mao X, Yu W, Wang J, Zeng Z, Deng S (2020). Chem Eng J 400, 125879

  17. Yang F, Mao X, Ma M, Jiang C, Zhang P, Wang J, Deng Q, Zeng Z, Deng S (2020) Carbon 168:528–535

    Article  CAS  Google Scholar 

  18. Chen S, Li Y, Bu Z, Yang F, Luo J, An Q, Zeng Z, Wang J, Deng S (2021) J Mater Chem A 9:1705–1712

    Article  CAS  Google Scholar 

  19. Alonso-Lemus IL, Escobar-Morales B, Lardizabal-Gutierrez D, Torre-Saenz LDL, Quintana-Owen P, Rodriguez-Varela FJ (2019) Int J Hydrogen Energy 44:12409–12414

    Article  CAS  Google Scholar 

  20. Zhou L, Fu P, Wen D, Yuan Y, Zhou S (2016) Appl Catal B: Environ 181:635–643

    Article  CAS  Google Scholar 

  21. Wang N, Li T, Song Y, Liu J, Wang F (2018) Carbon 130:692–700

    Article  CAS  Google Scholar 

  22. Weththasinha HABMD, Yan Z, Gao L, Li Y, Pan D, Zhang M, Lv X, Wei W, Xie J (2017). Int J Hydrogen Energy 42, 20560–20567

  23. Zhang F, Miao J, Liu W, Xu D, Li X (2019) Int J Hydrogen Energy 44:30986–30998

    Article  CAS  Google Scholar 

  24. Sharma PP, Wu J, Yadav RM, Liu M, Wright CJ, Tiwary CS, Yakobson BI, Lou J, Ajayan PM, Zhou XD (2015) Angew Chem Int Ed Engl 54:13701–13705

    Article  CAS  PubMed  Google Scholar 

  25. Xu J, Kan Y, Huang R, Zhang B, Wang B, Wu KH, Lin Y, Sun X, Li Q, Centi G, Su D (2016) Chemsuschem 9:1085–1089

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Seredych M, Rodriguez-Castellon E, Bandosz TJ (2016) Chemsuschem 9:606–616

    Article  CAS  PubMed  Google Scholar 

  27. Pachfule P, Shinde D, Majumder M, Xu Q (2016) Nat Chem 8:718–724

    Article  CAS  PubMed  Google Scholar 

  28. Bon Yoon S, Seok Chai G, Ki Kang S, Yu JS, Gierszal K, Jaroniec M (2005) J Am Chem Soc, 127, 4188–4189

  29. Cui XQ, Pan ZY, Zhang LJ, Peng HS, Zheng GF (2017) Adv Energy Mater, 7, 1701456

  30. Li Q, Zhu W, Fu J, Zhang H, Wu G, Sun S (2016) Nano Energy 24:1–9

    Article  CAS  Google Scholar 

  31. Xia ZH, An L, Chen PK, Xia DG (2016) Adv Energy Mater 6, 1600458

  32. Li H, Zhang L, Li L, Wu C, Huo Y, Chen Y, Liu X, Ke X, Luo J, Van Tendeloo G (2019) Nano Res 12:33–39

    Article  CAS  Google Scholar 

  33. Liu L, Zeng G, Chen J, Bi L, Dai L, Wen Z (2018) Nano Energy 49:393–402

    Article  CAS  Google Scholar 

  34. Liang J, Du X, Gibson C, Du XW, Qiao SZ (2013) Adv Mater 25:6226–6231

    Article  CAS  PubMed  Google Scholar 

  35. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764

    Article  CAS  PubMed  Google Scholar 

  36. Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) J Am Chem Soc 135:1524–1530

    Article  CAS  PubMed  Google Scholar 

  37. Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T (2012) Carbon 50:1699–1703

    Article  CAS  Google Scholar 

  38. Liu X, Xi W, Li C, Li X, Shi J, Shen Y, He J, Zhang L, Xie L, Sun X, Wang P, Luo J, Liu L-M, Ding Y (2018) Nano Energy 44:371–377

    Article  CAS  Google Scholar 

  39. Zhang L, Han L, Liu H, Liu X, Luo J (2017) Angew Chem Int Ed Engl 56:13694–13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin L, Zhu Q, Xu AW (2014) J Am Chem Soc 136:11027–11033

    Article  CAS  PubMed  Google Scholar 

  41. Zhang W, Wu Z-Y, Jiang H-L, Yu S-H (2014) J Am Chem Soc 136:14385–14388

    Article  CAS  PubMed  Google Scholar 

  42. Zhang J, Zhao Z, Xia Z, Dai L (2015) Nature Nanotech 10:444–452

    Article  CAS  Google Scholar 

  43. Li X, Zhao Y, Yang Y, Gao S (2019) Nano Energy 62:628–637

    Article  CAS  Google Scholar 

  44. Han Z, Mu Z, Li B, Wang Z, Zhang J, Niu S, Ren L (2016) ACS Nano 10:8591–8602

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo JC, Pennycook SJ, Dai H (2012) Nat Nanotechnol 7:394–400

    Article  CAS  PubMed  Google Scholar 

  46. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) J Am Chem Soc 136:7845–7848

    Article  CAS  PubMed  Google Scholar 

  47. Guo S, Zhao S, Gao J, Zhu C, Wu X, Fu Y, Huang H, Liu Y, Kang Z (2017) Nanoscale 9:298–304

    Article  CAS  PubMed  Google Scholar 

  48. Guo Z, Ren G, Jiang C, Lu X, Zhu Y, Jiang L, Dai L (2015) Sci Rep 5, 17064

  49. Gao S, Li X, Li L, Wei X (2017) Nano Energy 33:334–342

    Article  CAS  Google Scholar 

  50. Zhang Y, Wu H, Zhao W, Li X, Yin R, Qian L, Qi Y, Yang K (2017) Mater Design 130:366–372

    Article  CAS  Google Scholar 

  51. Wang R, Feng J-J, Liu W-D, Jiang L-Y, Wang A-J (2017) Biosens Bioelectron 96:152–158

    Article  CAS  PubMed  Google Scholar 

  52. Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S (2015) J Am Chem Soc 137:5555–5562

    Article  CAS  PubMed  Google Scholar 

  53. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  54. Liu A, Guan W, Wu K, Ren X, Gao L, Ma T (2021) Appl Surf Sci 540, 148319

  55. Chai G-L, Guo Z-X (2016) Chem Sci 7:1268–1275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (21501132) and Science and Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2018KJ126).

Author information

Authors and Affiliations

Authors

Contributions

Gaocan Qi, Qianrui Zhao and Dongyu Fang: Investigation; Data curation; Visualization; Validation; Writing, original draft. Qingjian Liu: Conceptualization; Methodology; Resources; Funding acquisition; Review and editing. Xijun Liu: Conceptualization, Methodology, Supervision.

Corresponding author

Correspondence to Qingjian Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary data associated with this article can be found, in the online version, at xxxxxxxxxxxxxx.

Supplementary File 1 (DOCX 2.43 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Zhao, Q., Liu, Q. et al. Biomass-derived carbon frameworks for oxygen and carbon dioxide electrochemical reduction. Ionics 27, 3579–3586 (2021). https://doi.org/10.1007/s11581-021-04135-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04135-5

Keywords

Navigation