Skip to main content
Log in

Highly sensitive ethanol gas sensor based on In2O3 spheres

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In2O3 spheres were successfully prepared by nitric acid-assisted solvothermal method. The morphology and structure of the products can be controlled by the content of nitric acid. After adding with nitric acid, the sensing performance of In2O3 has been improved. In particular, the In2O3 spheres with partial broken structures prepared with 100 μL nitric acid show high response of 250 to 50 ppm ethanol at the operating temperature of 250 °C and exhibit good selectivity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. King PDC, Veal TD, Fuchs F, Wang CY, Payne DJ, Bourlange A, Zhang H, Bell GR, Cimalla V, Ambacher O, Egdell RG, Bechstedt F, McConville CF (2009) Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys Rev B 79:205211

    Article  Google Scholar 

  2. Gu FB, Li CJ, Han DM, Wang ZH (2018) Manipulating the defect structure (V-O) of In2O3 nanoparticles for enhancement of formaldehyde detection. ACS Appl Mater Interfaces 10:933–942

    Article  CAS  Google Scholar 

  3. Zhang S, Song P, Yan HH, Wang Q (2016) Self-assembled hierarchical Au-loaded In2O3 hollow microspheres with superior ethanol sensing properties. Sensor Actuators B Chem 231:245–255

    Article  CAS  Google Scholar 

  4. Gao LP, Cheng ZX, Xiang Q, Zhang Y, Xu JQ (2015) Porous corundum-type In2O3 nanosheets: synthesis and NO2 sensing properties. Sensor Actuators B Chem 208:436–443

    Article  CAS  Google Scholar 

  5. Ma HN, Yu LM, Yuan X, Li Y, Li C, Yin ML, Fan XH (2019) Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J Alloys Compd 782:1121–1126

    Article  CAS  Google Scholar 

  6. Li YS, Xu J, Chao JF, Chen D, Ouyang SX, Ye JH, Shen GZ (2011) High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J Mater Chem 21:12852–12857

    Article  CAS  Google Scholar 

  7. Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mater Interfaces 3:2246–2252

    Article  CAS  Google Scholar 

  8. Wang J, Su J, Chen H, Zou XX, Li GD (2018) Oxygen vacancy-rich, Ru-doped In2O3 ultrathin nanosheets for efficient detection of xylene at low temperature. J Mater Chem C 6:4156–4162

    Article  CAS  Google Scholar 

  9. Xu YY, Tian X, Liu P, Sun YQ, Du GX (2019) In2O3 nanoplates with different crystallinity and porosity: controllable synthesis and gas-sensing properties investigation. J Alloys Compd 787:1063–1073

    Article  CAS  Google Scholar 

  10. Zhang S, Song P, Zhang J, Yan HH, Li J, Yang ZX, Wang Q (2017) Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensor Actuators B Chem 242:983–993

    Article  CAS  Google Scholar 

  11. Gao LP, Ren FM, Cheng ZX, Zhang Y, Xiang Q, Xu JQ (2015) Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. Crystengcomm 17:3268–3276

    Article  CAS  Google Scholar 

  12. Zhang T, Gu FB, Han DM, Wang ZH, Guo GS (2013) Synthesis, characterization and alcohol-sensing properties of rare earth doped In2O3 hollow spheres. Sensor Actuators B Chem 177:1180–1188

    Article  CAS  Google Scholar 

  13. Wang SM, Cao J, Cui W, Fan LL, Li XF, Li DJ (2018) Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sensor Actuators B Chem 255:159–165

    Article  CAS  Google Scholar 

  14. Yang W, Feng L, He SH, Liu LY, Liu ST (2018) Density gradient strategy for preparation of broken In2O3 microtubes with remarkably selective detection of triethylamine vapor. ACS Appl Mater Interfaces 10:27131–27140

    Article  CAS  Google Scholar 

  15. Wei DD, Jiang WH, Gao HY, Chuai XH, Liu FM, Liu FM, Sun P, Liang XS, Gao Y, Yan X, Lu GY (2018) Facile synthesis of La-doped In2O3 hollow microspheres and enhanced hydrogen sulfide sensing characteristics. Sensor Actuators B Chem 276:413–420

    Article  CAS  Google Scholar 

  16. Hu J, Sun YJ, Xue Y, Zhang M, Li PW, Lian K, Zhuiykov S, Zhang WD, Chen Y (2018) Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensor Actuators B Chem 257:124–135

    Article  CAS  Google Scholar 

  17. Ding MD, Xie N, Wang C, Kou XY, Zhang H, Guo LL, Sun YF, Chuai XH, Gao Y, Liu FM, Sun P, Lu GY (2017) Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sensor Actuators B Chem 252:418–427

    Article  CAS  Google Scholar 

  18. Shuang Y, Xu CY, Hu SP, Wang WS, Jing Y, Liang Z (2016) Solvothermal synthesis of InOOH nanospheres with enhanced photocatalytic activity. Bull Kor Chem Soc 37:522–528

    Article  Google Scholar 

  19. Li BX, Xie Y, Jing M, Rong GX, Tang YC, Zhang GZ (2006) In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis. Langmuir 22:9380–9385

    Article  CAS  Google Scholar 

  20. Zhang T, Chen M, Gu FB, Han DM, Wang ZH, Guo GS (2012) Alcohol sensing properties of Er-doped In2O3 hollow spheres. Integr Ferroelectr 138:117–122

    Article  CAS  Google Scholar 

  21. Tao K, Han X, Yin Q, Wang D, Han L, Chen L (2017) Metal-organic frameworks-derived porous In2O3 hollow nanorod for high-performance ethanol gas sensor. Chemistryselect 2:10918–10925

    Article  CAS  Google Scholar 

  22. Han D, Song P, Zhang HH, Yan HH, Xu Q, Yang ZX, Wang Q (2014) Flower-like In2O3 hierarchical nanostructures: synthesis, characterization, and gas sensing properties. RSC Adv 4:50241–50248

    Article  CAS  Google Scholar 

  23. Zhou XX, Qu FD, Zhang BX, Jiang CJ, Yang MH (2017) Facile synthesis of In2O3 microcubes with exposed {100} facets as gas sensing material for selective detection of ethanol vapor. Mater Lett 209:618–621

    Article  CAS  Google Scholar 

  24. Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, Wang PY, Gengzang DJ, Yo HH (2018) Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sensor Actuators B Chem 264:263–278

    Article  CAS  Google Scholar 

  25. Montazeri A, Jamali-Sheini F (2017) Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method. Sensor Actuators B Chem 242:778–791

    Article  CAS  Google Scholar 

  26. Pouilloux Y, Metayer S, Barrault J (2000) Synthesis of glycerol monooctadecanoate from octadecanoic acid and glycerol. Influence of solvent on the catalytic properties of basic oxides. J Mol Catal A Chem 3:589–594

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51802276, 21878257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Yue or Wenhui Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Xu, N., Guan, R. et al. Highly sensitive ethanol gas sensor based on In2O3 spheres. Ionics 27, 3647–3653 (2021). https://doi.org/10.1007/s11581-021-04057-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04057-2

Keywords

Navigation