Skip to main content
Log in

Yolk-shell silicon/carbon composites prepared from aluminum-silicon alloy as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Silicon is an attractive anode material for lithium-ion batteries due to its ultrahigh theoretical specific capacity. However, its commercial application is largely limited by the poor cycling stability due to its huge volume change during lithiation and delithiation. A low-cost method is developed to prepare yolk-shell silicon@void@carbon composite particles in this study. The synthetic phenol-formaldehyde resole resin was used to bind the graphite to the surfaces of the aluminum-silicon alloy particles, and then was thermal cross-linked and carbonized; aluminum was gently dissolved into ferric chloride etchant, leaving void space between the carbon shell and silicon core. Owing to the presence of the robust carbon shell and internal void space, the yolk-shell composites exhibited significantly better cycling stability than the powder mixture of silicon and graphite. The capacity retention of the silicon component in the powder mixture dropped below 60% after only one cycle, whereas silicon in the composite still has about 70% remaining capacity after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882

    Article  Google Scholar 

  2. Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y-J (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143

    Article  CAS  Google Scholar 

  3. Arya A, Sharma A (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540

    Article  CAS  Google Scholar 

  4. Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z (2018) Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 14(8):1702737

    Article  Google Scholar 

  5. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123

    Article  CAS  Google Scholar 

  6. Bercero ML, Wachsman E, Thangadurai V, Coronado JM, Freer R, Skinner S, Bruce DW, O'Hare D, Walton RI (2019) Energy storage and conversion materials. Royal Society of Chemistry, London

    Google Scholar 

  7. Wang C, Zhao H, Wang J, Wang J, Lv P (2013) Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics 19(2):221–226

    Article  CAS  Google Scholar 

  8. Xu Y, Sun X, Wei C (2020) Improving the electrochemical performance of lithium Si batteries by multilayer porous carbon nanosheets/multi-walled carbon nanotubes composite inert nano-Ag. Ionics 26(3):1149–1158

    Article  CAS  Google Scholar 

  9. Seng KH, M-h P, Guo ZP, Liu HK, Cho J (2013) Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. Nano Lett 13(3):1230–1236

    Article  CAS  Google Scholar 

  10. Wu N, Jia T, Shi Y-R, Yang Y-J, Li TH, Li F, Wang Z (2020) High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries. Ionics 26(3):1547–1553

    Article  CAS  Google Scholar 

  11. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2014) N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries. Nano Energy 8:157–164

    Article  CAS  Google Scholar 

  12. Hou Y, Li J, Wen Z, Cui S, Yuan C, Chen J (2015) Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12:1–8

    Article  CAS  Google Scholar 

  13. Li J, Hou Y, Gao X, Guan D, Xie Y, Chen J, Yuan C (2015) A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 16:10–18

    Article  Google Scholar 

  14. Lei C, Wang F, Yang J, Gao X, Yu X, Yang B, Chen G, Yuan C, Lei L, Hou Y (2018) Embedding Co2P nanoparticles in N-doped carbon nanotubes grown on porous carbon polyhedra for high-performance lithium-ion batteries. Ind Eng Chem Res 57(39):13019–13025

    Article  CAS  Google Scholar 

  15. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5):414–429

    Article  CAS  Google Scholar 

  16. Casimir A, Zhang H, Ogoke O, Amine JC, Lu J, Wu G (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376

    Article  CAS  Google Scholar 

  17. He Y, Lin Y, Jiang J, Yang D, Du N, He X, Ren J, He P, Pang C, Xiao C (2019) Litchi-structural core-shell Si@C for high-performance lithium-ion battery anodes. Ionics 25(12):5809–5818

    Article  CAS  Google Scholar 

  18. Luo W, Chen X, Xia Y, Chen M, Wang L, Wang Q, Li W, Yang J (2017) Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 7(24):1701083

    Article  Google Scholar 

  19. Tao W, Wang P, You Y, Park K, Wang C-Y, Li Y-K, Cao F-F, Xin S (2019) Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res 12:1739–1749

    Article  CAS  Google Scholar 

  20. Park Y, Choi N-S, Park S, Woo SH, Sim S, Jang BY, Oh SM, Park S, Cho J, Lee KT (2013) Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries. Adv Energy Mater 3(2):206–212

    Article  CAS  Google Scholar 

  21. Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12(6):3315–3321

    Article  CAS  Google Scholar 

  22. Guo S, Hu X, Hou Y, Wen Z (2017) Tunable synthesis of yolk-shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl Mater Interfaces 9(48):42084–42092

    Article  CAS  Google Scholar 

  23. Su H, Barragan AA, Geng L, Long D, Ling L, Bozhilov KN, Mangolini L, Guo J (2017) Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries. Angew Chem 129(36):10920–10925

    Article  Google Scholar 

  24. Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5(7):2967–2973

    Article  CAS  Google Scholar 

  25. Xu R, Zhang K, Wei R, Yuan M, Zhang Y, Liang F, Yao Y (2020) High-capacity flour-based nano-Si/C composite anode materials for lithium-ion batteries. Ionics 26(1):1–11

    Article  CAS  Google Scholar 

  26. Peled E, Menkin S (2017) SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719

    Article  CAS  Google Scholar 

  27. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL III (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  CAS  Google Scholar 

  28. Xiao W, Miao C, Yan X, Mei P (2015) Novel silicon-oxygen-carbon composite with excellent cycling steady performance as anode for lithium-ion batteries. Ionics 21(8):2149–2153

    Article  CAS  Google Scholar 

  29. Gong X, Zheng Y, Zheng J, Cao S, Wen H, Lin B, Sun Y (2020) Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries. ChemElectroChem 7(6):1465–1472

  30. Gong X, Zheng J, Zheng Y, Cao S, Wen H, Lin B, Sun Y (2020) Succinimide-modified graphite as anode materials for lithium-ion batteries. Electrochim Acta 356:136858

    Article  CAS  Google Scholar 

  31. Hewathilake HS, Karunarathne N, Wijayasinghe A, Balasooriya N, Arof A (2017) Performance of developed natural vein graphite as the anode material of rechargeable lithium ion batteries. Ionics 23(6):1417–1422

    Article  Google Scholar 

  32. Gan C, Zhang C, Wen W, Liu Y, Chen J, Xie Q, Luo X (2019) Enhancing delithiation reversibility of Li15Si4 alloy of silicon nanoparticles-carbon/graphite anode materials for stable-cycling lithium ion batteries by restricting the silicon particle size. ACS Appl Mater Interfaces 11(39):35809–35819

    Article  CAS  Google Scholar 

  33. Jia H, Zheng J, Song J, Luo L, Yi R, Estevez L, Zhao W, Patel R, Li X, Zhang J-G (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597

    Article  CAS  Google Scholar 

  34. Tian H, Tan X, Xin F, Wang C, Han W (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 11:490–499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 715 kb)

ESM 2

(XLS 3936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Zheng, Y., Zheng, J. et al. Yolk-shell silicon/carbon composites prepared from aluminum-silicon alloy as anode materials for lithium-ion batteries. Ionics 27, 1939–1948 (2021). https://doi.org/10.1007/s11581-021-03967-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03967-5

Keywords

Navigation