Skip to main content
Log in

Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

A Correction to this article was published on 02 July 2021

This article has been updated

Abstract

A unique MoS2/graphene composite (MoS2/GrF) was synthesized via a facile hydrothermal method. XRD, FESEM, EDS, TEM, HRTEM, XPS, and BET analyses were performed to characterize the as-synthesized samples. The samples were demonstrated to present interesting uniform three-dimensional hierarchical heterogeneous structures where MoS2 microspheres (with an average diameter of 750 nm) penetrated the graphene layer. By the “space-confined” effect, the (002) plane of MoS2 is inhibited when grown in the interlayer of GO, which increases the interlayer spacing and improves the rate performance of the electrode. Moreover, MoS2 that grows between the graphene layers can form a good contact, reducing the contact resistance. As an anode material for lithium-ion batteries, the MoS2/GrF electrode exhibited an outstanding reversible capacity (1510 mAh g−1 at 100 mA g−1 after 200 cycles) and excellent rate performance (~990 mAh g−1 at 1000 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

Change history

References

  1. Li Y, Jiang S, Qian Y, Yan X, Zhou J, Yi Z, Lin N, Qian Y (2020) 2D interspace confined growth of ultrathin MoS2-intercalated graphite hetero-layers for high-rate Li/K storage. Nano Res 14:1061–1068

    Article  Google Scholar 

  2. Qin M, Ren W, Meng J, Wang X, Mai L (2019) Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain Chem Eng 13:11564–11570

    Article  Google Scholar 

  3. Ren W, Qin M, Zhu Z, Yan M, Li Q, Zhang L, Liu D, Mai L (2017) Activation of sodium storage sites in prussian blue analogues via surface etching. Nano Lett 8:4713–4718

    Article  Google Scholar 

  4. Li JH, Tao HC, Zhang YK, Yang XL (2019) Molybdenum disulfide/reduced graphene oxide nanocomposite with expanded interlayer spacing for sodium ion batteries. J Electrochem Soc 15:A3685–A3692

    Article  Google Scholar 

  5. Zhang YQ, Tao HC, Li T, Du SL, Li JH, Zhang YK, Yang XL (2018) Vertically oxygen-incorporated MoS2 nanosheets coated on carbon fibers for sodium-ion batteries. ACS Appl Mater Interfaces 10:35206–35215

    Article  CAS  PubMed  Google Scholar 

  6. Chang K, Chen W, Ma L, Li H, Li H, Huang F, Xu Z, Zhang Q, Lee JY (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 17:6251–6257

    Article  Google Scholar 

  7. Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 1:209–231

    Article  Google Scholar 

  8. Tian R, Wang W, Huang Y, Duan H, Guo Y, Kang H, Li H, Liu H (2016) 3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes. J Mater Chem A 34:13148–13154

    Article  Google Scholar 

  9. Zhang R, Tang Z, Wang HY, Sun D, Tang YG, Xie ZY (2020) The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries. Electrochim Acta 364:136996

    Article  CAS  Google Scholar 

  10. Choi JH, Kim MC, Moon SH, Kim H, Kim YS, Park KW (2020) Enhanced electrochemical performance of MoS2/graphene nanosheet nanocomposites. RSC Adv 32:19077–19082

    Article  Google Scholar 

  11. Wang C, Wan W, Huang Y, Chen J, Zhou HH, Zhang XX (2014) Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 10:5351–5358

    Article  Google Scholar 

  12. Wan Z, Shao J, Yun J, Zheng H, Gao T, Shen M, Qu Q, Zheng H (2014) Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 23:4975–4981

    Article  Google Scholar 

  13. Zhang L, Lou XW (2014) Hierarchical MoS2 shells supported on carbon spheres for highly reversible lithium storage. Chemistry 18:5219–5223

    Article  Google Scholar 

  14. Ding S, Chen JS, Lou XW (2011) Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chemistry 47:13142–13145

    Article  Google Scholar 

  15. Wang S, Jiang X, Zheng H, Wu H, Kim SJ, Feng C (2012) Solvothermal synthesis of MoS2/carbon nanotube composites with improved electrochemical performance for lithium ion batteries. Nano Nanotechnol Lett 4:378–383

    Article  CAS  Google Scholar 

  16. Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 6:4720–4728

    Article  Google Scholar 

  17. Liu Y, Zhao Y, Jiao L, Chen J (2014) A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries. J Mater Chem A 32:13109–13115

    Article  Google Scholar 

  18. Zhou X, Wan LJ, Guo YG (2013) Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chem Commun (Camb) 18:1838–1840

    Article  Google Scholar 

  19. Zhang YQ, Tao HC, Ma H, Du SL, Li T, Zhang YK, Li JH, Yang XL (2018) Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage. Electrochim Acta 283:619–627

    Article  CAS  Google Scholar 

  20. Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM (2014) A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater 1:125–130

    Article  Google Scholar 

  21. Wang J, Liu J, Chao D, Yan J, Lin J, Shen ZX (2014) Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv Mater 42:7162–7169

    Article  Google Scholar 

  22. Pan F, Wang J, Yang Z, Gu L, Yu Y (2015) MoS2–graphene nanosheet–CNT hybrids with excellent electrochemical performances for lithium-ion batteries. RSC Adv 95:77518–77526

    Article  Google Scholar 

  23. Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, Du X, Du Z, Lv P, Swierczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 9:8526–8535

    Article  Google Scholar 

  24. Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed Eng 41:12783–12788

    Article  Google Scholar 

  25. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 6:1339–1339

    Article  Google Scholar 

  26. Chen S, Chen P, Wu M, Pan D, Wang Y (2010) Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem Commun 10:1302–1306

    Article  Google Scholar 

  27. Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830

    Article  CAS  PubMed  Google Scholar 

  28. Xie KY, Yuan K, Li X, Lu W, Shen C, Liang CL, Vajtai R, Ajayan P, Wei BQ (2017) Superior potassium ion storage via vertical MoS2 "nano-rose" with expanded interlayers on graphene. Small 42:1–8

    Google Scholar 

  29. Zhou JS, Li JM, Liu KH, Lan L, Song HH, Chen XH (2014) Free-standing cobalt hydroxide nanoplatelet array formed by growth of preferential-orientation on graphene nanosheets as anode material for lithium-ion batteries. J Mater Chem A 48:20706–20713

    Article  Google Scholar 

  30. Sun Y, Hu X, Luo WHuang Y (2012) Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J Mater Chem 2:425–431

    Article  Google Scholar 

  31. Koroteev VO, Bulusheva LG, Asanov IP, Shlyakhova EV, Vyalikh DV, Okotrub AV (2011) Charge transfer in the MoS2/carbon nanotube composite. J Phys Chem C 43:21199–21204

    Article  Google Scholar 

  32. Wang HW, Skeldon P, Thompson GE (1997) XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf Coat Technol 3:200–207

    Article  CAS  Google Scholar 

  33. Sun YM, Hu XL, Yu JC, Li Q, Luo W, Yuan LX, Zhang WX, Huang YH (2011) Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ Sci 4:2870–2877

    Article  CAS  Google Scholar 

  34. Zheng XL, Xu JB, Yan KY, Wang H, Wang ZL, Yang SH (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 7:2344–2353

    Article  Google Scholar 

  35. Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144

    Article  CAS  Google Scholar 

  36. Li L, Zhou GM, Weng Z, Shan XY, Li F, Cheng HM (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507

    Article  CAS  Google Scholar 

  37. Zhou GM, Wang DW, Yin LC, Li N, Li F, Cheng HM (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 4:3214–3223

    Article  Google Scholar 

  38. Xu HP, Shi LY, Wang ZY, Liu J, Zhu JF, Zhao Y, Zhang MH, Yuan S (2015) Fluorine-doped tin oxide nanocrystal/reduced graphene oxide composites as lithium ion battery anode material with high capacity and cycling stability. ACS Appl Mater Interfaces 49:27486–27493

    Article  Google Scholar 

  39. Zhang SP, Chowdari BVR, Wen ZY, Jin J, Yang JH (2015) Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 12:12464–12472

    Article  Google Scholar 

  40. Tang YP, Wu DQ, Mai YY, Pan H, Cao J, Yang CQ, Zhang F, Feng XL (2014) A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage. Nanoscale 24:14679–14685

    Article  Google Scholar 

  41. Fang XP, Yu XQ, Liao SF, Shi YF, Hu YS, Wang ZX, Stucky GD, Chen LQ (2012) Lithium storage performance in ordered mesoporous MoS2 electrode material. Microporous Mesoporous Mater 151:418–423

    Article  CAS  Google Scholar 

  42. Ding S, Zhang D, Chen JS, Lou XW (2012) Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale 1:95–98

    Article  Google Scholar 

  43. Du G, Guo Z, Wang S, Zeng R, Chen Z, Liu H (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun (Camb) 7:1106–1108

    Article  Google Scholar 

  44. Wang Z, Chen T, Chen WX, Chang K, Ma L, Huang GC, Chen DY, Lee JY (2013) CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J Mater Chem A 6:2202–2210

    Article  Google Scholar 

  45. Sheng JZ, Wang TS, Tan JY, Lv W, Qiu L, Zhang QF, Zhou GM, Cheng HM (2020) Intercalation-induced conversion reactions give high-capacity potassium storage. ACS Nano 10:14026–14035

    Article  Google Scholar 

Download references

Funding

We acknowledge the financial support from the National Natural Science Foundation of China (No.51972071), Guangxi Distinguished Experts Special Fund (No.2019B06), and Guangxi Research Foundation for Science and Technology Base and Talent Special (No.AD19245175) and Opening Fund of Guangxi Key Laboratory of Building New Energy and Energy Saving (No.18-J-21-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 6101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, F., Chen, Y., Wu, C. et al. Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries. Ionics 27, 1977–1986 (2021). https://doi.org/10.1007/s11581-021-03936-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03936-y

Keywords

Navigation