Skip to main content
Log in

Sn@C composite for lithium ion batteries: amorphous vs. crystalline structures

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Tin has been considered an ideal anode material for lithium ion batteries because of its high theoretical capacity. However, its practical application is limited due to the poor cycling stability, which is induced by the huge volume variation upon lithiation/delithiation. Moreover, amorphous and crystalline structures can significantly influence the electrochemical performance of Sn-based electrode for lithium ion batteries. Herein, the specific capacity, cycling performance, rate capability, and kinetic process of amorphous-Sn@C (am-Sn@C) and crystalline-Sn@C (cr-Sn@C) as anodes for lithium ion batteries have been compared. The am-Sn@C electrode exhibits higher capacity, better cycling stability (711 mAh g−1 after 200 cycles at 0.1 A g−1; 510 mAh g−1 after 500 cycles at 1 A g−1) and rate capability than cr-Sn@C electrode (574 mAh g−1 after 200 cycles at 0.1 A g−1; 156 mAh g−1 after 500 cycles at 1 A g−1) as anode for lithium ion batteries. The enhanced electrochemical performance of the am-Sn@C electrode can be attributed to the enhanced strain regulation to accommodate volume change and defect sites to improve lithium storage capacity. The preparation method can be viewed as a reference for the further development of alloy-based anodes with high capacity and long cycle life for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  2. Wang S, Jiao SQ, Wang JX, Chen HS, Tian DH, Lei HP, Fang DN (2017) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11:469–477

    Article  PubMed  Google Scholar 

  3. Zheng ZM, Li P, Huang J, Liu HD, Zao Y, Hu ZL, Zhang L, Chen HX, Wang MS, Peng DL, Zhang QB (2020) High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem 41:126–134

    Article  Google Scholar 

  4. Sun HB, Wang W, Yu ZJ, Yuan Y, Wang S, Jiao SQ (2015) A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun 51:11892–11895

    Article  CAS  Google Scholar 

  5. Li JS, Xu XJ, Luo ZS, Zhang CQ, Zuo Y, Zhang T, Tang PY, Infante-Carrió MF, Arbiol J, Llorca J, Liu J, Cabot A (2019) Co-Sn nanocrystalline solid solutions as anode materials in lithium-ion batteries with high pseudocapacitive contribution. ChemSusChem 12:1451–1458

    Article  PubMed  CAS  Google Scholar 

  6. Qiu LB, Liu ZH, Ono LK, Jiang Y, Son DY, Hawash Z, He SS, Qi YB (2019) Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv Funct Mater 29:1806779

    Article  CAS  Google Scholar 

  7. Ying HJ, Han WQ (2017) Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci 4:1700298

    Article  Google Scholar 

  8. Liu YC, Zhang N, Jiao LF, Tao ZL, Chen J (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25:214–220

    Article  CAS  Google Scholar 

  9. Zhu HL, Jia Z, Chen YC, Weadock N, Wan JY, Vaaland O, Han XG, Li T, Hu LB (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13:3093–3100

    Article  PubMed  CAS  Google Scholar 

  10. Wang B, Luo B, Li XL, Zhi LJ (2012) The dimensionality of Sn anodes in Li-ion batteries. Mater Today 15:544–552

    Article  CAS  Google Scholar 

  11. Cook JB, Detsi E, Liu YJ, Liang YL, Kim H, Petrissans X, Dunn BS, Tolbert SH (2017) Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode. ACS Appl Mater Interfaces 9:293–303

    Article  PubMed  CAS  Google Scholar 

  12. Hassoun BJ, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  CAS  Google Scholar 

  13. Xu YH, Zhu YJ, Liu YH, Wang CS (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133

    Article  CAS  Google Scholar 

  14. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340

    Article  CAS  Google Scholar 

  15. Dong W, Yang SB, Liang B, Shen D, Sun W, Liu Y, Zhao YS, Wang XL, Wu XL (2017) C/Sn/RGO nanocomposites as higher initial coulombic efficiency anode for sodium-ion batteries. ChemistrySelect 2:11739–11746

    Article  CAS  Google Scholar 

  16. Ye XC, Lin ZH, Liang SJ, Huang XH, Qiu XY, Qiu YC, Liu XM, Xie D, Deng H, Xiong XH, Lin Z (2019) Upcycling of electroplating sludge into ultrafine Sn@C nanorods with highly stable lithium storage performance. Nano Lett 19:1860–1866

    Article  PubMed  CAS  Google Scholar 

  17. Li XF, Dhanabalan A, Gu L, Wang CL (2012) Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv Energy Mater 2:238–244

    Article  Google Scholar 

  18. Qi J, Lai XY, Wang JY, Tang HJ, Ren H, Yang Y, Jin Q, Zhang LJ, Yu RB, Ma GH, Su ZG, Zhao HJ, Wang D (2015) Multi-shelled hollow micro-/nanostructures. Chem Soc Rev 44:6749–6773

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Qiao SZ, Chen JS, Lou XW, Xing XR, Lu GQ (2011) Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–12591

    Article  CAS  Google Scholar 

  20. Zhang HW, Huang XD, Noonan O, Zhou L, Yu CZ (2017) Tailored yolk-shell Sn@C nanoboxes for high-performance lithium storage. Adv Funct Mater 27:1606023

    Article  Google Scholar 

  21. Guo YY, Zeng XQ, Zhang Y, Dai ZF, Fan HS, Huang Y, Zhang WN, Zhang H, Lu J, Huo FW, Yan QY (2017) Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces 9:17172–17177

    Article  PubMed  CAS  Google Scholar 

  22. Fan Q, Chupas PJ, Whittingham MS (2007) Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem Solid-State Lett 10:A274–A278

    Article  CAS  Google Scholar 

  23. Todd ADW, Ferguson PP, Fleischauer MD, Dahn JR (2010) Tin-based materials as negative electrodes for Li-ion batteries: combinatorial approaches and mechanical methods. Int J Energy Res 34:535–555

    Article  Google Scholar 

  24. Wu C, Maier J, Yu Y (2015) Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries. Adv Funct Mater 25:3488–3496

    Article  CAS  Google Scholar 

  25. Lin C, Ouyang LZ, Zhou CJ, Hu RZ, Yang LC, Yang XS, Shao HY, Zhu M (2019) A novel selenium-phosphorous amorphous composite by plasma assisted ball milling for high-performance rechargeable potassium-ion battery anode. J Power Sources 443:227276

    Article  CAS  Google Scholar 

  26. Stokes K, Geaney H, Sheehan M, Borsa D, Ryan KM (2019) Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes. Nano Lett 19:8829–8835

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Y, Wang PX, Yin YY, Liu NN, Song N, Fan LS, Zhang NQ, Sun KN (2019) Carbon coated amorphous bimetallic sulfide hollow nanocubes towards advanced sodium ion battery anode. Carbon 150:378–387

    Article  CAS  Google Scholar 

  28. Zou X, Sun Q, Zhang YX, Li GD, Liu YP, Wu YY, Yang L, Zou XX (2018) Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci Rep 8:4478

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan J, Yu K, Mao HZ, Li LL, Zhang YC, Li YL, Ferreira PJ, Yang J (2020) Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem Eng J 380:122624

    Article  CAS  Google Scholar 

  30. Li ZT, Feng JZ, Hu H, Dong YF, Ren H, Wu WT, Hu ZP, Wu MB (2018) An amorphous tin-based nanohybrid for ultra-stable sodium storage. J Mater Chem A 6:18920–18927

    Article  CAS  Google Scholar 

  31. Han F, Li WC, Lei C, He B, Oshida K, Lu AH (2014) Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery. Small 10:2637–2644

    Article  PubMed  CAS  Google Scholar 

  32. Zhu J, Deng D (2015) Amorphous bimetallic Co3Sn2 nanoalloys is better than crystalline counterparts for sodium storage. J Phys Chem C 119:21323–21328

    Article  CAS  Google Scholar 

  33. Wang MS, Wang ZQ, Chen Z, Yang ZL, Tang ZL, Luo HY, Huang Y, Li X, Xu W (2018) One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chem Eur J 334:162–171

    CAS  Google Scholar 

  34. Wang MS, Peng AM, Xu H, Yang ZL, Zhang L, Zhang J, Yang H, Chen JC, Huang Y, Li X (2020) Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J Power Sources 469:228414

    Article  CAS  Google Scholar 

  35. Wang ZQ, Wang MS, Yang ZL, Bai YS, Ma Y, Wang GL, Huang Y, Li X (2017) SnO2/Sn nanoparticles embedded in an ordered, porous carbon framework for high-performance lithium-ion battery anodes. ChemElectroChem 4:345–352

    Article  CAS  Google Scholar 

  36. Adelfar R, Mirzadeh F, Ataie A, Malekan M (2019) Amorphization and mechano-crystallization of high-energy ball milled Fe-Ti alloys. J Non-Cryst Solids 520:119466

    Article  CAS  Google Scholar 

  37. Shin H, Zhang JY, Lu W (2019) A comprehensive study of black phosphorus-graphite composite anodes and HEMM synthesis conditions for improved cycle stability. J Electrochem Soc 166:A2673–A2682

    Article  CAS  Google Scholar 

  38. Zhang XF, Jiao SQ, Tu JG, Song WL, Xiao X, Li SJ, Wang MY, Lei HP, Tian DH, Chen HS, Fang DN (2019) Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ Sci 12:1918–1927

    Article  CAS  Google Scholar 

  39. Li WJ, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX (2014) Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater 26:4037–4042

    Article  PubMed  CAS  Google Scholar 

  40. Niu XG, Zhang YC, Tan LL, Yang Z, Yang J, Liu T, Zeng L, Zhu YJ, Guo L (2019) Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater 22:160–167

    Article  Google Scholar 

  41. Pan QC, Huang YG, Wang HQ, Yang GH, Wang LC, Chen J, Zan YH, Li QY (2016) MoS2/C nanosheets encapsulated Sn@SnOx nanoparticles as high-performance lithium-iom battery anode material. Electrochim Acta 197:50–57

    Article  CAS  Google Scholar 

  42. Lu HY, Ai FX, Jia YL, Tang CY, Zhang XH, Huang YH, Yang HX, Cao YL (2018) Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 14:1802694

    Article  Google Scholar 

  43. Zou L, Gan L, Kang FY, Wang MX, Shen WC, Huang ZH (2010) Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. J Power Sources 195:1216–1220

    Article  CAS  Google Scholar 

  44. Ryu S, Shim HC, Song JT, Kim L, Ryoo H, Hyun S, Oh J (2019) High-pressure evaporation-based nanoporous black Sn for enhanced performance of lithium-ion battery anodes. Part Part Syst Charact 36:1800331

    Article  Google Scholar 

  45. Zheng FH, Pan QC, Yang CH, Xiong XH, Ou X, Hu RZ, Chen Y, Liu ML (2017) Sn-MoS2-C@C microspheres as a sodium-ion battery anode material with high capacity and long cycle life. Chem Eur J 23:5051–5058

    Article  PubMed  CAS  Google Scholar 

  46. Mohri N, Kerschbaumer H, Link T, Andre R, Panthöfer M, Ksenofontov V, Tremel W (2019) Self-organized arrays of SnO2 microplates with photocatalytic and antimicrobial properties. Eur J Inorg Chem 27:3171–3179

    Article  Google Scholar 

  47. Park MG, Lee DH, Jung H, Choi JH, Park CM (2018) Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility. ACS Nano 12:2955–2967

    Article  PubMed  CAS  Google Scholar 

  48. Wen WW, Zou MZ, Feng Q, Li JX, Lai H, Huang ZG (2016) SnO2 nanospheres among GO and SWNTs networks as anode for enhanced lithium storage performances. J Energy Chem 25:445–449

    Article  Google Scholar 

  49. Li M, Zhang LL, Yang XL, Huang YH, Sun HB, Ni SB, Tao HC (2015) Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive. J Solid State Electrochem 19:415–421

    Article  CAS  Google Scholar 

  50. Wang S, Yu ZJ, Tu JG, Wang JX, Tian DH, Liu YJ, Jiao SQ (2016) A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv Energy Mater 6:1600137

    Article  Google Scholar 

  51. Zhang M, Wang T, Cao G (2015) Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries. Int Mater Rev 60:330–352

    Article  Google Scholar 

  52. Zhao B, Liu QQ, Chen YJ, Liu Q, Yu Q, Wu HB (2020) Interface-induced pseudocapacitance in nonporous heterogeneous particles for high volumetric sodium storage. Adv Funct Mater 30:2002019

    Article  CAS  Google Scholar 

  53. Ma WS, Yin KB, Gao H, Niu JZ, Peng ZQ, Zhang ZH (2018) Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano Energy 54:349–359

    Article  CAS  Google Scholar 

  54. Stournaraz ME, Guduru PR, Shenoy VB (2012) Elastic behavior of crystalline Li-Sn phases with increasing Li concentration. J Power Sources 208:165–169

    Article  Google Scholar 

  55. Wang X, Cao XQ, Bourgeois L, Guan H, Chen SM, Zhong YT, Tang DM, Li HQ, Zhai TY, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22:2682–2690

    Article  CAS  Google Scholar 

  56. Hu RZ, Sun W, Zeng MQ, Zhu M (2014) Dispersing SnO2 nanocrystals in amorphous carbon as a cyclic durable anode material for lithium ion batteries. J Energy Chem 23:338–345

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the support from the National Key R&D Program of China (2018YFB0905400), NSFC (No. 51772169), and the Major Technological Innovation Project of Hubei Science and Technology Department (2019AAA164). This work was supported by the Research Project of Education Department of Hubei Province (D20191202) and 111 Project of Hubei Province (2018-19-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huachao Tao or Xuelin Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Du, S., Tao, H. et al. Sn@C composite for lithium ion batteries: amorphous vs. crystalline structures. Ionics 27, 1403–1412 (2021). https://doi.org/10.1007/s11581-021-03906-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03906-4

Keywords

Navigation