Skip to main content

Advertisement

Log in

Semiconductor TiO2 ceramic filler for safety-improved composite ionic liquid gel polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Gel polymer electrolytes are one of the candidates for solid electrolytes to solve safety issues and improve the energy density of solid-state lithium batteries. Gel polymer electrolyte has high ionic conductivity at room temperature (~ 10−3 S cm−1), but its mechanical properties are poor. Herein, we prepared a series of composite gel polymer electrolytes by N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide, poly(vinylidene fluoride-hexafluoropropylene), LiTFSI, and various inorganic fillers. The addition of 5 wt% TiO2 can not only increase the ionic conductivity of gel polymer electrolytes but also improve the mechanical properties of gel polymer electrolytes. Besides, as a semiconductor, the TiO2 has safety risk when uses in composite gel polymer electrolyte. TiO2-ILGPE safety is investigated by cyclic voltammetry and battery performance. Additionally, TiO2-ILGPE displays a perfect flame-retarding ability, and TiO2 would not be reduced by the lithium metal anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yi TF, Pan JJ, Wei TT, Li Y, Cao G (2020) NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries. Nano Today 33:100894. https://doi.org/10.1016/j.nantod.2020.100894

    Article  CAS  Google Scholar 

  2. Yi TF, Mei J, Peng PP, Luo S (2019) Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos Part B Eng 167:566–572. https://doi.org/10.1016/j.compositesb.2019.03.032

    Article  CAS  Google Scholar 

  3. Yi TF, Wei TT, Li Y, He YB, Wang ZB (2020) Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater 26:165–197. https://doi.org/10.1016/j.ensm.2019.12.042

    Article  Google Scholar 

  4. Rosero-Navarro NC, Kinoshita T, Miura A, Higuchi M, Tadanaga K (2017) Effect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics (Kiel) 23:1619–1624. https://doi.org/10.1007/s11581-017-2106-x

    Article  CAS  Google Scholar 

  5. Pan XN, Hou J, Liu L, Yang PX, Zhang JQ, An MZ, Li N (2017) A piperidinium-based ester-functionalized ionic liquid as electrolytes in Li/LiFePO4 batteries. Ionics (Kiel) 23:3151–3161. https://doi.org/10.1007/s11581-017-2104-z

    Article  CAS  Google Scholar 

  6. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:1–7. https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  7. Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B (2011) Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. ChemSusChem 4:125–130. https://doi.org/10.1002/cssc.201000254

    Article  CAS  PubMed  Google Scholar 

  8. Lian PJ, Zhao BS, Zhang LQ, Xu N, Wu MT, Gao XP (2019) Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J Mater Chem A 7:20540–20557. https://doi.org/10.1039/c9ta04555d

    Article  CAS  Google Scholar 

  9. Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics (Kiel) 12:81–92. https://doi.org/10.1007/s11581-006-0013-7

    Article  CAS  Google Scholar 

  10. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2016) Interface stability in solid-state batteries. Chem Mater 28:266–273. https://doi.org/10.1021/acs.chemmater.5b04082

    Article  CAS  Google Scholar 

  11. Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu KK, Pastel G, Lin CF, Mo Y, Wachsman ED, Hu L (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201606042

    Article  CAS  Google Scholar 

  12. Wang L, Liu D, Huang T, Geng Z, Yu A (2020) Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection. RSC Adv 10:10038–10045. https://doi.org/10.1039/d0ra00829j

    Article  CAS  Google Scholar 

  13. Weppner W (2003) Engineering of solid state ionic devices. Ionics (Kiel) 9:444–464. https://doi.org/10.1007/BF02376599

    Article  CAS  Google Scholar 

  14. Ulaganathan M, Rajendran S (2010) Preparation and characterizations of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics (Kiel) 16:515–521. https://doi.org/10.1007/s11581-009-0415-4

    Article  CAS  Google Scholar 

  15. Yang P, Liu L, Li L, Hou J, Xu YP, Ren X, An MZ, Li N (2014) Gel polymer electrolyte based on polyvinylidenefluoride-co-hexafluoropropylene and ionic liquid for lithium ion battery. Electrochim Acta 115:454–460. https://doi.org/10.1016/j.electacta.2013.10.202

    Article  CAS  Google Scholar 

  16. Kim K, Park S, Choi S, Lee H (2006) Ionic liquid – polymer gel electrolytes based on morpholinium salt and PVdF ( HFP ) copolymer. J Power Sources 155:385–390. https://doi.org/10.1016/j.jpowsour.2005.05.018

    Article  CAS  Google Scholar 

  17. Chaudoy V, Ghamouss F, Luais E, Tran-Van F (2016) Cross-linked polymer electrolytes for Li-based batteries: from solid to gel electrolytes. Ind Eng Chem Res 55:9925–9933. https://doi.org/10.1021/acs.iecr.6b02287

    Article  CAS  Google Scholar 

  18. Zhang MY, Li MX, Chang Z, Wang YF, Gao J, Zhu YS, Wu YP, Huang W (2017) A Sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim Acta 245:752–759. https://doi.org/10.1016/j.electacta.2017.05.154

    Article  CAS  Google Scholar 

  19. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander BE (2003) Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics 156:179–195. https://doi.org/10.1016/S0167-2738(02)00616-1

    Article  CAS  Google Scholar 

  20. Yang L, Wang Z, Feng Y, Tan R, Zuo Y, Gao R, Zhao Y, Han L, Wang Z, Pan F (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li–electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1–9. https://doi.org/10.1002/aenm.201701437

    Article  CAS  Google Scholar 

  21. Choudhary S, Sengwa RJ (2017) Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim Acta 247:924–941. https://doi.org/10.1016/j.electacta.2017.07.051

    Article  CAS  Google Scholar 

  22. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14. https://doi.org/10.1016/s0167-2738(98)00114-3

    Article  CAS  Google Scholar 

  23. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152:A396. https://doi.org/10.1149/1.1850854

    Article  CAS  Google Scholar 

  24. Lopez J, Mackanic DG, Cui Y, Bao Z (2019) Designing polymers for advanced battery chemistries. Nat Rev Mater 4:312–330. https://doi.org/10.1038/s41578-019-0103-6

    Article  CAS  Google Scholar 

  25. Tambelli CC, Bloise AC, Rosário AV, Pereira EC, Magon CJ, Donoso JP (2007) Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim Acta 47:1677–1682

    Article  Google Scholar 

  26. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745. https://doi.org/10.1021/acs.nanolett.5b00600

    Article  CAS  PubMed  Google Scholar 

  27. Chee SC, Heng YA, Lian TL, et al. (2018) Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes. 3rd International Conference on the Science and Engineering of Materials 2017.

  28. Mohamad AA, Mohamed NS, Yahya MZA, et al. (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 156(1-2):171–177

  29. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  30. Hu J, Wang W, Zhou B, Feng Y, Xie X, Xue Z (2019) Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. J Memb Sci 575:200–208. https://doi.org/10.1016/j.memsci.2019.01.025

    Article  CAS  Google Scholar 

  31. Zhao B, Lu X, Wang Q, Yang J, Zhao J, Zhou H (2020) Enhancing the ionic conductivity in a composite polymer electrolyte with ceramic nanoparticles anchored to charged polymer brushes. Chinese Chem Lett 31:831–835. https://doi.org/10.1016/j.cclet.2019.06.009

    Article  CAS  Google Scholar 

  32. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. J Mater Chem 22:18961–18967. https://doi.org/10.1039/c2jm33156j

    Article  CAS  Google Scholar 

  33. Pan X, Liu T, Kautz DJ, Mu L, Tian C, Long TE, Yang P, Lin F (2018) High-performance N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries. J Power Sources 403:127–136. https://doi.org/10.1016/j.jpowsour.2018.09.080

    Article  CAS  Google Scholar 

  34. Choi BK, Shin KH (1996) Effects of SiC fillers on the electrical and mechanical properties of (PEO)16LiClO4 electrolytes. Solid State Ionics 86–88:303–306. https://doi.org/10.1016/0167-2738(96)00134-8

    Article  Google Scholar 

  35. Köster TKJ, van Wüllen L (2010) Cation-anion coordination, ion mobility and the effect of Al2O3 addition in PEO based polymer electrolytes. Solid State Ionics 181:489–495. https://doi.org/10.1016/j.ssi.2010.02.005

    Article  CAS  Google Scholar 

  36. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523. https://doi.org/10.1038/35087538

    Article  CAS  PubMed  Google Scholar 

  37. Angulakshmi N, Nahm KS, Swaminathan V et al (2012) Nanocomposite polymer electrolytes for lithium batteries. Polym Process Charact 394:55–65. https://doi.org/10.1201/b13105

    Article  Google Scholar 

  38. Mohamad AA, Mohamed NS, Yahya MZA, et al (2003) Ionic conductivity studies of poly ( vinyl alcohol ) alkaline solid polymer electrolyte and its use in nickel – zinc cells. 156:171–177

  39. Gorecki W, Donoso P, Berthier C et al (1988) NMR, DSC and conductivity study of the polymer solid electrolytes P(EO) (LiCp+1F2p+3SO3)x. Solid State Ionics 28–30:1018–1022. https://doi.org/10.1016/0167-2738(88)90323-2

    Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 21878061). X.P. and Q.H. acknowledge the support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

P.Y., X.P., and Q.H. designed the experiments. X.P. and Q.H. performed preparation, materials characterization, and electrochemical measurements. L.L, J.Z., and M.A. participated in the scientific discussion. X.P. and Q.H. analyzed the data and wrote the manuscript with assistance from coauthors.

Corresponding author

Correspondence to Peixia Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Hou, Q., Liu, L. et al. Semiconductor TiO2 ceramic filler for safety-improved composite ionic liquid gel polymer electrolytes. Ionics 27, 2045–2051 (2021). https://doi.org/10.1007/s11581-020-03850-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03850-9

Keywords

Navigation