Skip to main content
Log in

On the X-ray photoelectron spectra, oxygen permeability, and electrical conductivity variations in (Ba0.5Sr0.5)(ZnηFe1-η)O3-ξ (η = 0, 0.2) system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The perovskite ABO3-ξ cubic compounds have received attention due to their widespread applications in sensors, oxygen pumps, and gas separation. An attempt has been made here to study the X-ray photoelectron spectra, electrical conductivity, and oxygen permeability of sol-gel-derived (Ba0.5Sr0.5)(ZnηFe1-η)O3-ξ (η = 0 and 0.2) compounds. Zinc insertion is shown to (i) retain the perovskite-type cubic phase—increasing the lattice parameter from 3.937 to 3.975 ± 0.002 Å, (ii) limit (ξ) value within 0.2–0.6, (iii) lower the conductivity, and (iv) reduce the oxygen permeability but provide structural stability. Further, XPS data reveal decrease in Fe4+ species more than Fe3+ ions, rise in anion vacancies, and differences in three types of oxygen ions (belonging to stoichiometric, oxygen-deficient, and surface regions) with binding energies in the range ~ 531.1 to 534.2 eV. Their discs serve as reliable oxygen-permeable membranes, exhibit flux density (JO2) of ~ 1.24 to 2.45 ml cm-2 min-1 at 1000 °C, and so found suitable for extracting pure oxygen from air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu X, Ghoniem A (2019) Mixed ionic-electronic conducting (MIEC) membranes for thermochemical reduction of CO2: a review. Prog Energy Combust Sci 74:1–30

    Article  Google Scholar 

  2. Plazaola AA, Labella AC, Liu Y, Porras NB, Tanaka DAP, Annaland MVS, Gallucci F (2019) Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: A Review. Processes 7:128

    Article  CAS  Google Scholar 

  3. Ren LX, Chang FL, Kang DY, Chen CL (2020) Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant. J Membr Sci 603:118001

    Article  CAS  Google Scholar 

  4. Jaiswal SK, Choi SM, Yoon KJ, Son JW, Kim BK, Lee HW, Lee JH (2015) Effect of Ba-deficiency on the phase and structural stability of (BaSr)(CeZr)O3-based proton conducting oxides. Int J Hydrog Energy 40:11022–11031

    Article  CAS  Google Scholar 

  5. Zhu X, Yang W (2019) Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Adv Mater 31:1902547

    Article  CAS  Google Scholar 

  6. Li K (2007) Ceramic membrane for separation and reaction, John Wiley, England. p. 178

  7. Jaiswal SK, Kumar J (2017) Oxygen permeation characteristics of sol-gel derived barium substituted strontium ferrite membranes. J Am Ceram Soc 100:1306–1312

    Article  CAS  Google Scholar 

  8. Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82:141–150

    Article  CAS  Google Scholar 

  9. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 − δ oxygen membrane. J Membr Sci 172:177–188

    Article  CAS  Google Scholar 

  10. Belousov VV, Fedorov SV (2018) An oxygen-permeable bilayer MIEC-redox membrane concept. ACS Appl Mater Interfaces 10:21794–21798

    Article  CAS  Google Scholar 

  11. Jaiswal SK, Ranjan R, Kumar J (2020) Structural, Mössbauer studies and oxygen permeation characteristics of Sr1-xBaxFe1-yLiyO3-ξ (x = 0, 0.5; y = 0 - 0.10) system. J Alloys Compd 844:155832

    Article  CAS  Google Scholar 

  12. Zhu XF, Wang HH, Yang WS (2004) Novel cobalt-free oxygen permeable membrane. Chem Commun 9:1130

    Article  Google Scholar 

  13. Figueiredo FM, Kharton VV, Viskup AP, Frade JR (2004) Surface enhanced oxygen permeation in CaTi1− xFexO3 − δ ceramic membranes. J Membr Sci 236:73–80

    Article  CAS  Google Scholar 

  14. Kharton V, Sobyanin VA, Belyaev VD, Semin GL (2004) Methane oxidation on the surface of mixed-conducting La0.3Sr0.7Co0.8Ga0.2O3-δ. Catal Commun 5:311–316

    Article  CAS  Google Scholar 

  15. Jaiswal SK, Kashyap VK, Kumar J (2012) On the sol-gel synthesis and characterization of oxygen permeable strontium ferrite ceramic material. Mater Res Bull 47:692–699

    Article  CAS  Google Scholar 

  16. Jaiswal SK, Kumar J (2012) Sol-gel formation, Mössbauer studies, optical absorption and impedance characteristics of Ba0.5Sr0.5Fe0.8Zn0.2O3-ξ powder. Mater Chem Phys 136:28–35

    Article  CAS  Google Scholar 

  17. Jaiswal SK, Kumar J (2012) Structural and optical absorption studies of barium substituted strontium ferrite powder. Solid State Sci 14:1157–1168

    Article  CAS  Google Scholar 

  18. Rodrıguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192:55–69

    Article  Google Scholar 

  19. Liu B, Zhang Y, Tang L (2009) X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3-d cathode for solid oxide fuel cells. Int J Hydrog Energy 34:435–439

    Article  CAS  Google Scholar 

  20. Lee SO, Lee D, Jung I, Kim D, Hyun SH, Kim J, Moon J (2013) Ceria interlayer-free Ba0.5Sr0.5Co0.8Fe0.2O3-d–Sc0.1Zr0.9O1.95 composite cathode on zirconia based electrolyte for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 38:9320–9329

    Article  CAS  Google Scholar 

  21. Heide PAW (2002) Systematic X-ray photoelectron spectroscopic study of La1-xSrx -based perovskite-type oxides. Surf Interface Anal 33:414–425

    Article  Google Scholar 

  22. Amsif M, Marrero-Lopez D, Ruiz-Morales JC, Savvin SN, Gabás M, Nunez P (2011) Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3_δ proton conductors. J Power Sources 196:3461–3469

    Article  CAS  Google Scholar 

  23. Hwang HY, Cheong SW, Radaelli PG (1995) Lattice Effects on the Magnetoresistance in Doped LaMnO3. Phys Rev Lett 75:914–917

    Article  CAS  Google Scholar 

  24. Sun ZH, Dai S, Zhou YL (2008) Elaboration and optical properties of GaFeO3 thin films. Thin Solid Films 516:7433–7436

    Article  CAS  Google Scholar 

  25. Atanelov J, Mohn P (2015) Electronic and magnetic properties of GaFeO3: ab initio calculations for varying Fe/Ga ratio, inner cationic site disorder, and epitaxial strain. Phys Rev B 92:104408

    Article  Google Scholar 

  26. Beck L, Gutiérrez PC, Miro S, Miserque F (2017) Ion beam modification of zinc white pigment characterized by ex situ and in situ μ-Raman and XPS. Nucl Inst Methods Phys Res B 409:96–101

    Article  CAS  Google Scholar 

  27. Martynczuk J, Efimov K, Robben L, Feldhoff A (2009) Performance of zinc-doped perovskite-type membranes at intermediate temperatures for long-term oxygen permeation and under a carbon dioxide atmosphere. J Membr Sci 344:62–70

    Article  CAS  Google Scholar 

  28. Wang H, Tablet C, Caro J (2005) Oxygen production at low temperature using dense perovskite hollow fiber membranes. J Membr Sci 322:214–217

    Article  Google Scholar 

  29. Tuller HL, Nowick AS (1977) Small polaron electron transport in reduced CeO2 single crystals. J Phys Chem Solids 38:859–867

    Article  CAS  Google Scholar 

  30. Wei B, Lu Z, Haung X, Liu M, Li N, Su W (2008) Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3 − δ perovskite oxide for IT-SOFC cathode. J Power Sources 176:1–8

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Department of Science and Technology (DST) - Science Engineering Research Board (SERB), New Delhi, India, under the grant (File number: ECR/2015/000444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Kumar Jaiswal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, S.K., Kumar, J. On the X-ray photoelectron spectra, oxygen permeability, and electrical conductivity variations in (Ba0.5Sr0.5)(ZnηFe1-η)O3-ξ (η = 0, 0.2) system. Ionics 27, 1323–1329 (2021). https://doi.org/10.1007/s11581-020-03848-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03848-3

Keywords

Navigation