Skip to main content
Log in

Mesocarbon microbeads with superior anode performance for sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mesocarbon microbeads (MCMBs) have a unique structure consisting of graphite-like carbon crystallites covered by spherical surfaces. Their potential anode performance for sodium-ion batteries is investigated. The carbon crystallites in the MCMBs being prepared at 800 °C have a wider crystallites’ interlayer spacing (d = 0.347 nm) than graphite and are stacked by 5–6 graphene layers with an average crystal width of 3.18 nm. MCMBs present a reversible capacity of ~ 180 mAh g−1 and a coulombic efficiency of ~ 99% during 100 discharge/charge cycles. Their superior electrochemical performance is attributed to their unique structure. We propose that sodium is stored in MCMBs mainly by an intercalation mechanism. After sodium intercalation in carbon crystallites, the carbon atoms of graphene layers stack in an AABAA… type, and the sodium atoms exist between the layers of AA with a detected expanded interlayer spacing of 0.437 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    Article  CAS  Google Scholar 

  2. Palomares V, Serras P, Villaluenga I, Hueso KB, Gonzalez JC, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901

    Article  CAS  Google Scholar 

  3. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  CAS  Google Scholar 

  5. Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3(18):9353–9378

    Article  CAS  Google Scholar 

  6. Cao B, Liu H, Xu B, Lei Y, Chen X, Song H (2016) Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J Mater Chem A 4(17):6472–6478

    Article  CAS  Google Scholar 

  7. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614

    Article  CAS  Google Scholar 

  8. Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T (2018) From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater 8(17):1703268

    Article  Google Scholar 

  9. Li Y, Lu Y, Adelhelm P, Titirici MM, Hu YS (2019) Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 48(17):4655–4687

    Article  CAS  Google Scholar 

  10. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    Article  CAS  Google Scholar 

  11. Zhao J, Zou X, Zhu Y, Xu Y, Wang C (2016) Electrochemical intercalation of potassium into graphite. Adv Funct Mater 26:8103–8110

    Article  CAS  Google Scholar 

  12. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  CAS  Google Scholar 

  13. Brooks JD, Taylor GH (1965) Formation of graphitizing carbons from the liquid phase. Nature 206(4985):697–699

    Article  CAS  Google Scholar 

  14. Sun S, Wang C, Chen M, Li M, Wang L (2014) A method to observe the structure of the interface between mesocarbon microbeads and pitch. J Colloid Interface Sci 426:206–208

    Article  CAS  Google Scholar 

  15. Zhao D, Ru Q, Hu S, Hou X (2017) Design and synthesis of a novel 3D hierarchical mesocarbon microbead as anodes for lithium ion batteries and sodium ion batteries. Ionics 23:897–905

    Article  CAS  Google Scholar 

  16. Tatsumi K, Iwashita N, Sakaebe H, Shioyama H, Higuchi S, Mabuchi A, Fujimoto H (1995) The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem Soc 142(3):716–720

    Article  CAS  Google Scholar 

  17. Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T (1995) The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem Soc 142(4):1041–1046

    Article  CAS  Google Scholar 

  18. Mabuchi A, Fujimoto H, Tokumitsu K, Kasuh T (1995) Charge-discharge mechanism of graphitized mesocarbon microbeads. J Electrochem Soc 142(9):3049–3051

    Article  CAS  Google Scholar 

  19. Song LJ, Liu SS, Yu BJ, Wang CY, Li MW (2015) Anode performance of mesocarbon microbeads for sodium-ion batteries. Carbon 95:972–977

    Article  CAS  Google Scholar 

  20. Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148(8):A803–A811

    Article  CAS  Google Scholar 

  21. Luo W, Jian Z, Xing Z, Wang W, Bommier C, Lerner MM, Ji X (2015) Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent Sci 1(9):516–522

    Article  CAS  Google Scholar 

  22. Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147(4):1271–1273

    Article  CAS  Google Scholar 

  23. Ponrouch A, Goňi AR, Palacín MR (2013) High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem Commun 27:85–88

    Article  CAS  Google Scholar 

  24. Bommier C, Luo W, Gao WY, Greaney A, Ma S, Ji X (2014) Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76:165–174

    Article  CAS  Google Scholar 

  25. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM (2016) Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater 6:1501588

    Article  Google Scholar 

  26. Alvin S, Yoon D, Chandra C, Cahyadi HS, Park JH, Chang W, Chung KY, Kim J (2019) Revealing sodium ion storage mechanism in hard carbon. Carbon 145:67–81

    Article  CAS  Google Scholar 

  27. Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195

    Article  CAS  Google Scholar 

  28. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2(7):873–877

    Article  CAS  Google Scholar 

  29. Jiang Z, Alamgir M, Abraham KM (1995) The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells. J Electrchem Soc 142(2):333–340

    Article  CAS  Google Scholar 

  30. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173

    Article  CAS  Google Scholar 

  31. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminum-ion battery. Nature 520(7547):325–328

    Article  Google Scholar 

  32. Petkov V, Timmons A, Camardese J, Ren Y (2011) Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction. J Phys Condens Matter 23:435003

    Article  Google Scholar 

  33. Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30(2):139–326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Wei Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JX., Zhang, YP., Guo, Y. et al. Mesocarbon microbeads with superior anode performance for sodium-ion batteries. Ionics 27, 677–682 (2021). https://doi.org/10.1007/s11581-020-03835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03835-8

Keywords

Navigation